630 Landwirtschaft, Veterinärmedizin
Refine
Year of publication
Document Type
- Article (55)
- Conference Proceeding (3)
- Bachelor Thesis (1)
Has Fulltext
- yes (59)
Is part of the Bibliography
- no (59)
Keywords
- Euterentzündung (34)
- Milchvieh (9)
- mastitis (9)
- bovine mastitis (8)
- Milchkuh (6)
- Milchviehbetrieb (5)
- Rind (5)
- intramammary infection (5)
- udder health (5)
- Antibiotikum (4)
Adopting a new milking system at a dairy farm causes various changes. This study examined the impact on udder health when changing from a conventional milking system to an automatic milking system. For this purpose, quarter milk samples were taken six times from 138 cows at one conventional dairy farm in Northern Germany over a five-week period around the time of the milking system changeover. To assess udder health, the absolute number of new intramammary infections and the causative pathogen genera and species were analysed for each individual study time point. Pathogen species were detected using matrix-assisted laser desorption ionisation time-of-flight, and the infection dynamics were analysed using two Poisson regression models. In addition, the prevalence and incidence of new intramammary infections and the infection dynamics of the four most frequently isolated pathogen species were calculated. Mixed models were used to determine the development of the new infection rate, the somatic cell count, the teat-end condition, and the udder hygiene between the individual study time points and to compare the new infection rate before and after the changeover of the milking system. After the automatic milking system had been installed, a significant increase in the quarter-level somatic cell count occurred (p < 0.001). Two days before the installation of the automatic milking system, the mean quarter-level somatic cell count was 11,940 cells/mL milk; one sampling date later, 8 days after the changeover, a mean quarter-level somatic cell count of 60,117 cells/mL milk was measured. The significant increase in somatic cell count was probably caused by the time between the last milking and the quarter milk sampling. Additionally, significantly more udders were scored as clean 8 days (95%) and 15 days (96%) after the changeover of the milking system compared to at the last sampling date (88%). Also, significantly more teat ends were classified as free of hyperkeratosis 15 days (80%) compared to 22 days (67%) after the changeover of the milking system. The highest number of absolute new intramammary infections was detected 8 days before the transition of the milking system (28.6%). The lowest number of absolute new intramammary infections occurred 8 days after the change to the automatic milking system (11.0%). Minor mastitis pathogens, such as non-aureus staphylococci and coryneform bacteria, were mainly responsible for the development of new intramammary infections. The most frequently isolated pathogen species were Staphylococcus sciuri, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Corynebacterium amycolatum, with a prevalence of up to 23.9, 10.7, 8.4, and 5.3%, respectively. By comparing the new infection rate before and after the changeover of the milking system, it was possible to establish that the changeover to the automatic milking system had no significant influence on the new intramammary infection rate (p = 0.988). Therefore, this trial confirmed that the changeover from a conventional milking system to an automatic milking system had no negative influence on udder health.
Intermediate cluster disinfection plays a vital role in preventing the transmission of mastitis pathogens during milking. This study evaluates the efficacy of different disinfection methods on teat liners through a randomized controlled field trial conducted on three dairy farms in Germany. The treatments assessed included dipping the liners in water, peracetic acid solution (PAS, 0.1%), and plasma-activated buffered solution (PABS). Total bacterial count (TBC) and the bacterial load of presumptive Staphylococcus (S.) aureus were measured using the wet–dry swab method. The results showed that PAS significantly reduced both TBC and S. aureus by 90% and 99%, respectively. PABS also demonstrated a significant reduction in the bacterial load of S. aureus. In contrast, dipping in water had no significant effect on either TBC or S. aureus bacterial counts. This study suggests that while PAS is the more effective disinfectant, PABS may offer an alternative with some antimicrobial activity. Further research on intermediate cluster disinfection in general is necessary to optimize its application and assess its long-term effectiveness in dairy farming practices.
Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.
Veterinary Treatment Approach and Antibiotic Usage for Clinical Mastitis in Danish Dairy Herds
(2021)
Danish veterinarians’ treatment approach and use of antibiotics for clinical mastitis were investigated through a web-based questionnaire. The objective of the study was to describe and evaluate how the clinical mastitis treatment practice in Danish dairy herds corresponds to evidence from the literature and legislative requirements, in order to suggest directions for improvements and approaches encouraging the prudent use of antibiotics. In total, 174 veterinarians working with cattle received the questionnaire and 85 (48.9%) completed it. Their answers suggested that the Danish treatment approach for clinical mastitis generally relies on combined systemic and intramammary antibiotic administration (92% would use this often or always) and almost always includes supportive treatment with nonsteroidal anti-inflammatory drugs (99% would use it often or always in combination with antibiotic therapy). While collecting milk samples in order to target treatment towards pathogens is a priority in the legislation and for veterinarians, the direct application seems hindered due to the waiting time with the currently used analysis practice. Consequently, 91% reported that they would start treatment immediately after clinical examination often or always. The results of this investigation show that there is a potential for improvement in targeting treatments towards the causative pathogen by encouraging methods that allow for a more rapid reliable pathogen determination. When this issue has been addressed, the available evidence on the best treatment practice of Gram-negative-caused mastitis cases can be applied properly, reducing the volume of antibiotic treatments with limited expected effect. Additionally, investigating the potential of reducing combined administration to only intramammary treatment in Gram-positive cases could be a further step towards a more prudent antibiotic strategy.
This paper introduces a method for analysing motion patterns that can be utilised to optimise data-driven systems. The aim is to use surveillance cameras and artificial intelligence to track multiple objects in a reliable manner, thereby preserving the authenticity of movement patterns for numerous and similar objects. In a case study, this method is applied to optimize lighting conditions in animal husbandry. Furthermore, this approach can be utilized not only in animal husbandry but also in other domains.
Postpartum excretion of internal teat sealant after selective dry cow treatment of dairy cows
(2024)
To comply with antibiotic restriction policies in the European Union, internal teat sealants (TS) are increasingly used at dry off (DO) in selective dry cow treatment protocols to maintain udder health. Postcalving TS residue attachment to milking equipment and associated cleaning difficulties is a reason some farmers stay away from blanket TS use. Our objective was therefore to improve insight into TS excretion visibility and to compare quantity, pattern, and presence versus absence of TS excretion postcalving between the typical 2 cow categories at DO: high (H)- and low (L)-SCC cows, treated with antibiotic (AB) plus TS (H-ABTS) or TS only (L-TS), respectively. In herds in the Netherlands (n = 3), and Germany (n = 4), cows were enrolled at DO, and categorized as H-ABTS (n = 93), or L-TS (n = 99). Postcalving, quarter-level TS visibility, quantities, patterns, and percentage of TS infused and excreted postcalving were recorded from 50 mL of premilk of every quarter at each of the first 15 or 16 milkings. Udder quarter health status was determined by bacteriological culture and SCC of quarter milk samples taken at DO and at d 3 postcalving and by clinical mastitis incidence from DO until 30 DIM. Univariable and multivariable models were created to explore associations of TS excretion presence versus absence at the first 3 milkings. Irrespective of SCC category, both laboratory personnel and farmers saw TS residues at the first milking in an equal 72% of quarters. Compared with laboratory as the gold standard, farmer sensitivity to spotting TS in premilk was 74.5% at the first milking and decreased to a maximum of 8.3% at the last 3 milkings. At the first milking, TS excretion quantities showed a bimodal distribution pattern and the mean percentage of TS infused (3.83 g) that was excreted in premilk at the first milking, was higher in the L-TS cows (45.5%) compared with the H-ABTS cows (32%). At the second and third milking, mean-adjusted TS percentage excreted was higher in the H-ABTS cows (8.5% and 1.8%, respectively) compared with the L-TS cows (4.6% and 0.4%, respectively). The multivariable model of the first 3 milkings showed parity at both the first and second milking, and the study group at both the second and third milking was significantly associated with TS presence. The univariable model showed no association between TS presence at the first milking and udder health. In conclusion, in premilk of the first milking, TS residue excretion was bimodal, higher in L-TS cows, more likely to be present in multiparous cows, and not associated with udder health. At the second and third milking, excretion was higher in H-ABTS cows and TS presence was only more likely in multiparous cows at the second milking.
Trueperella (T.) pyogenes is a mastitis-causing pathogen formerly known to cause severe clinical mastitis (CM), especially during the summer, leading to milk losses and low recovery rates. Unfortunately, its transmission behavior within herds is unclear. The diversity and occurrence of T. pyogenes were monitored to gain an initial insight into the infection transmission behavior of T. pyogenes in dairy herds and to lay a foundation for following targeted investigations. CM milk samples were collected from German herds, and one Swedish farm was sampled for isolates from subclinical mastitis. All in all, 151 T. pyogenes isolates from 16 herds were isolated, identified by MALDI TOF analysis and typed with RAPD PCR. Of these, 17 isolates originated from subclinical mastitis cases. We found that T. pyogenes mastitis occurred year-round, and clinical mastitis cases were caused by multiple strains (31 affected animals/28 strains). Instances of multiple cows being infected with the same T. pyogenes strain were rare and typically only involved a small number of animals at a time. However, if several quarters of a cow were affected, it was likely the same strain. Unlike clinical infections, subclinical T. pyogenes infections, in one investigated farm, harbored a dominant strain. Additionally, we found that T. pyogenes infections tended to persist and stay within a herd for a minimum of 7 months in the same or different cows.
Mastitis is a major health problem for bovines and can be categorized as non-severe or severe, based on clinical symptoms. A severe case of clinical mastitis is usually defined by the cow being affected systemically. It is important to consider how to handle severe cases because these cases can be fatal and cause high production losses. However, there are generally few detailed treatment guidelines. By conducting a scoping review on the topic, we aimed to synthesize the information that is available on treatment and outcomes, as reported from clinical trials and observational studies. This was facilitated by following the PRISMA-guidelines with a stepwise systematic screening of scientific literature on the subject, retrieved via Pubmed and Web of Science, using pre-defined selection criteria. The results yielded a total of 14 reports of treatment and outcomes in cases of naturally occurring severe clinical mastitis. Cross-trial comparison was difficult due to the different exclusion criteria and outcome definitions. Many studies focused on cases caused by gram-negative bacteria treated with intensive antibiotic protocols, often containing antibiotics that are categorized as critical for human health. Few focused on severe cases caused by gram-positive bacteria or on the relative use of non-antibiotic treatment. In general, only a small number of statistically significant differences were found in trials comparing different treatment protocols, with no obvious trends across trials. Our findings emphasize the need for more research into the treatment efficacy of antibiotic and non-antibiotic options for clinically severe mastitis. Furthermore, consideration of how trial conditions relate to the practical circumstances in a field setting could improve the applicability of reported results. This could help to provide practitioners with the information needed to make evidence-based treatment decisions in cases of clinically severe mastitis.
Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 µg/ml and 4.0 µg/ml in bovine feces for CP and CL, respectively, and at or below 8.0 µg/ml and 4.0 µg/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 µg/ml in feces and 0.03 µg/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products.
Bovine mastitis is one of the most important diseases in modern dairy farming, as it leads to reduced welfare and milk production and increased need for antibiotic use. Clinical mastitis in Denmark is most often treated with a combination of local and systemic treatment with penicillin. The objective of this randomized clinical trial was to assess whether worse results could be expected with local intramammary treatment with penicillin compared with a combination of local and systemic treatment with penicillin in terms of the bacteriological cure of mild and moderate clinical mastitis cases caused by gram-positive bacteria. We carried out a noninferiority trial with a noninferiority margin set to a relative reduction in bacteriological cure of 15% between these 2 treatment groups to assess the effect of reducing the total antibiotic use by a factor of 16 for each treated case. Clinical mastitis cases from 12 Danish dairy farms were considered for enrollment. On-farm selection of gram-positive cases was carried out by the farm personnel within the first 24 h after a clinical mastitis case was detected. A single farm used bacterial culture results from the on-farm veterinarian, whereas the other 11 farms were provided with an on-farm test to distinguish gram-positive bacteria from gram-negative or samples without bacterial growth. Cases with suspected gram-positive bacteria were allocated to a treatment group: either local or combination. Bacteriological cure was assessed based on the bacterial species identified in the milk sample from the clinical mastitis case and 2 follow-up samples collected approximately 2 and 3 wk after ended treatment. Identification of bacteria was carried out using MALDI-TOF on bacterial culture growth. Noninferiority was assessed using unadjusted cure rates and adjusted cure rates from a multivariable mixed logistic regression model. Of the 1,972 clinical mastitis cases registered, 345 (18%) met all criteria for inclusion (full data). The data set was further reduced to 265 cases for the multivariable analysis to include only complete registrations. Streptococcus uberis was the most commonly isolated pathogen. Noninferiority was demonstrated for both unadjusted and adjusted cure rates. The unadjusted cure rates were 76.8% and 83.1% for the local and combined treatments, respectively (full data). The pathogen and somatic cell count before the clinical case had an effect on the efficacy of treatment; thus efficient treatment protocols should be herd- and case-specific. The effect of pathogen and somatic cell count on treatment efficacy was similar irrespective of the treatment protocol. We conclude that bacteriological cure of local penicillin treatment for mild and moderate clinical mastitis cases was noninferior to the combination of local and systemic treatment using a 15% noninferiority margin. This suggests that a potential 16-fold reduction in antimicrobial use per mastitis treatment can be achieved with no adverse effect on cure rate.