Fakultät IV - Wirtschaft und Informatik
Refine
Year of publication
Document Type
- Conference Proceeding (65)
- Working Paper (65)
- Article (50)
- Bachelor Thesis (45)
- Report (34)
- Master's Thesis (21)
- Book (19)
- Study Thesis (10)
- Course Material (9)
- Part of a Book (6)
Has Fulltext
- yes (337)
Is part of the Bibliography
- no (337)
Keywords
- Digitalisierung (16)
- E-Learning (15)
- Agilität <Management> (11)
- Führung (11)
- Grader (11)
- Herbarium (11)
- Korruption (11)
- Programmierung (11)
- Autobewerter (10)
- Computerunterstütztes Lernen (10)
The digital transformation with its new technologies and customer expectation has a significant effect on the customer channels in the insurance industry. The objective of this study is the identification of enabling and hindering factors for the adoption of online claim notification services that are an important part of the customer experience in insurance. For this purpose, we conducted a quantitative cross-sectional survey based on the exemplary scenario of car insurance in Germany and analyzed the data via structural equation modeling (SEM). The findings show that, besides classical technology acceptance factors such as perceived usefulness and ease of use, digital mindset and status quo behavior play a role: acceptance of digital innovations, lacking endurance as well as lacking frustration tolerance with the status quo lead to a higher intention for use. Moreover, the results are strongly moderated by the severity of the damage event—an insurance-specific factor that is sparsely considered so far. The latter discovery implies that customers prefer a communication channel choice based on the individual circumstances of the claim.
During the Corona-Pandemic, information (e.g. from the analysis of balance sheets and payment behavior) traditionally used for corporate credit risk analysis became less valuable because it represents only past circumstances. Therefore, the use of currently published data from social media platforms, which have shown to contain valuable information regarding the financial stability of companies, should be evaluated. In this data e. g. additional information from disappointed employees or customers can be present. In order to analyze in how far this data can improve the information base for corporate credit risk assessment, Twitter data regarding the ten greatest insolvencies of German companies in 2020 and solvent counterparts is analyzed in this paper. The results from t-tests show, that sentiment before the insolvencies is significantly worse than in the comparison group which is in alignment with previously conducted research endeavors. Furthermore, companies can be classified as prospectively solvent or insolvent with up to 70% accuracy by applying the k-nearest-neighbor algorithm to monthly aggregated sentiment scores. No significant differences in the number of Tweets for both groups can be proven, which is in contrast to findings from studies which were conducted before the Corona-Pandemic. The results can be utilized by practitioners and scientists in order to improve decision support systems in the domain of corporate credit risk analysis. From a scientific point of view, the results show, that the information asymmetry between lenders and borrowers in credit relationships, which are principals and agents according to the principal-agent-theory, can be reduced based on user generated content from social media platforms. In future studies, it should be evaluated in how far the data can be integrated in established processes for credit decision making. Furthermore, additional social media platforms as well as samples of companies should be analyzed. Lastly, the authenticity of user generated contend should be taken into account in order to ensure, that credit decisions rely on truthful information only.
Unternehmen, die sich ernsthaft mit Nachhaltigkeit beschäftigen, müssen den Nachweis erbringen, dass sie positive Effekte für die Gesellschaft erzielen. Damit ist eine ganzheitliche Wirkungsmessung unabdingbar. Sozialunternehmen sollten als Vorbild für eine solche Wirkungsmessung dienen. Eine wissenschaftliche Studie auf Basis der sog. „Ergebnispyramide“ kommt jedoch zu dem Schluss, dass selbst diese ihre Wirkung bisher kaum ganzheitlich messen.
In this paper we describe the selection of a modern build automation tool for an industry research partner of ours, namely an insurance company. Build automation has become increasingly important over the years. Today, build automation became one of the central concepts in topics such as cloud native development based on microservices and DevOps. Since more and more products for build automation have entered the market and existing tools have changed their functional scope, there is nowadays a large number of tools on the market that differ greatly in their functional scope. Based on requirements from our partner company, a build server analysis was conducted. This paper presents our analysis requirements, a detailed look at one of the examined tools and a summarizes our comparison of all three tools from our final comparison round.
Music streaming platforms offer music listeners an overwhelming choice of music. Therefore, users of streaming platforms need the support of music recommendation systems to find music that suits their personal taste. Currently, a new class of recommender systems based on knowledge graph embeddings promises to improve the quality of recommendations, in particular to provide diverse and novel recommendations. This paper investigates how knowledge graph embeddings can improve music recommendations. First, it is shown how a collaborative knowledge graph can be derived from open music data sources. Based on this knowledge graph, the music recommender system EARS (knowledge graph Embedding-based Artist Recommender System) is presented in detail, with particular emphasis on recommendation diversity and explainability. Finally, a comprehensive evaluation with real-world data is conducted, comparing of different embeddings and investigating the influence of different types of knowledge.
Die Angriffserkennung ist ein wesentlicher Bestandteil, Cyberangriffe zu verhindern und abzumildern. Dazu werden Daten aus verschiedenen Quellen gesammelt und auf Einbruchsspuren durchsucht. Die heutzutage produzierten Datenmengen sind ein wesentliches Problem für die Angriffserkennung. Besonders bei komplexen Cyberangriffen, die über einen längeren Zeitraum stattfinden, wächst die zu durchsuchende Datenmenge stark an und erschwert das Finden und Kombinieren der einzelnen Angriffsschritte.
Eine mögliche Lösung, um dem Problem entgegenzuwirken, ist die Reduktion der Datenmenge. Die Datenreduktion versucht, Daten herauszufiltern, die aus Sicht der Angriffserkennung irrelevant sind. Diese Ansätze werden unter dem Begriff Reduktionstechniken zusammengefasst. In dieser Arbeit werden Reduktionstechniken aus der Wissenschaft untersucht und auf Benchmark Datensätzen angewendet, um ihre Nutzbarkeit zu evaluieren. Dabei wird der Frage nachgegangen, ob die Reduktionstechniken in der Lage sind, irrelevante Daten ausfindig zu machen und zu reduzieren, ohne dass eine Beeinträchtigung der Angriffserkennung stattfindet. Die Evaluation der Angriffserkennung erfolgt durch ThreaTrace, welches eine Graph Neural Network basierte Methode ist.
Die Evaluierung zeigt, dass mehrere Reduktionstechniken die Datenmenge wesentlich reduzieren können, ohne die Angriffserkennung zu beeinträchtigen. Bei drei Techniken führt der Einsatz zu keinen nennenswerten Veränderungen der Erkennungsraten. Dabei wurden Reduktionsraten von bis zu 30 % erreicht. Bei der Anwendung einer Reduktionstechnik stieg die Erkennungsleistung sogar um 8 %. Lediglich bei zwei Techniken führt der Einsatz zum drastischen Absinken der Erkennungsrate.
Insgesamt zeigt die Arbeit, dass eine Datenreduktion angewandt werden kann, ohne die Angriffserkennung zu beeinträchtigen. In besonderen Fällen kann eine Datenreduktion, die Erkennungsleistung sogar verbessern. Allerdings ist der erfolgreiche Einsatz der Reduktionstechniken abhängig vom verwendeten Datensatz und der verwendeten Methode der Angriffserkennung.
The transfer of historically grown monolithic software architectures into modern service-oriented architectures creates a lot of loose coupling points. This can lead to an unforeseen system behavior and can significantly impede those continuous modernization processes, since it is not clear where bottlenecks in a system arise. It is therefore necessary to monitor such modernization processes with an adaptive monitoring concept to be able to correctly record and interpret unpredictable system dynamics. This contribution presents a generic QoS measurement framework for service-based systems. The framework consists of an XML-based specification for the measurement to be performed – the Information Model (IM) – and the QoS System, which provides an execution platform for the IM. The framework will be applied to a standard business process of the German insurance industry, and the concepts of the IM and their mapping to artifacts of the QoS System will be presented. Furtherm ore, design and implementation of the QoS System’s parser and generator module and the generated artifacts are explained in detail, e.g., event model, agents, measurement module and analyzer module.
Der Bachelor-Studiengang Mediendesigninformatik der Hochschule Hannover ist ein Informatikstudiengang mit dem speziellen Anwendungsgebiet Mediendesign. In Abgrenzung von Studiengängen der Medieninformatik liegt der Anwendungsfokus auf der kreativen Gestaltung etwa von 3D-Modellierungen, Animationen und Computerspielen. Absolvent*innen des Studiengangs sollen an der Schnittstelle zwischen Informatik und Mediendesign agieren können, zum Beispiel bei der Erstellung von Benutzungsschnittstellen und VR/AR-Anwendungen. Der Artikel stellt das Curriculum des interdisziplinären Studiengangs vor und reflektiert nach dem Abschluss der ersten beiden Studierendenkohorten die Erfahrungen, indem die ursprünglichen Ziele den Zahlen der Hochschulstatistik und den Ergebnissen zweier Studierendenbefragungen gegenübergestellt werden.