Fakultät II - Maschinenbau und Bioverfahrenstechnik
Refine
Year of publication
Document Type
- Article (149)
- Conference Proceeding (17)
- Periodical Part (9)
- Report (9)
- Book (7)
- Part of a Book (5)
- Course Material (1)
- Master's Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (199)
Is part of the Bibliography
- no (199)
Keywords
- Euterentzündung (22)
- Logistik (20)
- Milchwirtschaft (20)
- Molkerei (13)
- bioplastics (9)
- biopolymers (9)
- land use (9)
- market data facts (9)
- Klebeverbindung (8)
- PPS (8)
The aim of this cross-sectional study was to investigate associated factors of the severity of clinical mastitis (CM). Milk samples of 249 cases of CM were microbiologically examined, of which 27.2% were mild, 38.5% moderate, and 34.3% severe mastitis. The samples were incubated aerobically and anaerobically to investigate the role of aerobic and anaerobic microorganisms. In addition, the pathogen shedding was quantitatively examined, and animal individual data, outside temperature and relative humidity, were collected to determine associated factors for the severity of CM. The pathogen isolated the most was Escherichia coli (35.2%), followed by Streptococcus spp. (16.4%). Non-aureus staphylococci (NaS) (15.4%) and other pathogens (e.g., Staphylococcus aureus, coryneforms) (15.4%) were the pathogens that were isolated the most for mild mastitis. Moderate mastitis was mostly caused by E. coli (38%). E. coli was also the most common pathogen in severe mastitis (50.6%), followed by Streptococcus spp. (16.4%), and Klebsiella spp. (10.3%). Obligate anaerobes (Clostridium spp.) were isolated in one case (0.4%) of moderate mastitis. The mortality rate (deceased or culled due to the mastitis in the following two weeks) was 34.5% for severe mastitis, 21.7% for moderate mastitis, and 4.4% for mild mastitis. The overall mortality rate of CM was 21.1%. The pathogen shedding (back logarithmized) was highest for severe mastitis (55,000 cfu/mL) and E. coli (91,200 cfu/mL). High pathogen shedding, low previous somatic cell count (SCC) before mastitis, high outside temperature, and high humidity were associated with severe courses of mastitis.
The aim of this cross-sectional study was to investigate the occurrence of bacteremia in severe mastitis cases of dairy cows. Milk and corresponding blood samples of 77 cases of severe mastitis were bacteriologically examined. All samples (milk and blood) were incubated aerobically and anaerobically to also investigate the role of obligate anaerobic microorganisms in addition to aerobic microorganisms in severe mastitis. Bacteremia occurred if identical bacterial strains were isolated from milk and blood samples of the same case. In addition, pathogen shedding was examined, and the data of animals and weather were collected to determine associated factors for the occurrence of bacteremia in severe mastitis. If Gram-negative bacteria were detected in milk samples, a Limulus test (detection of endotoxins) was also performed for corresponding blood samples without the growth of Gram-negative bacteria. In 74 cases (96.1%), microbial growth was detected in aerobically incubated milk samples. The most-frequently isolated bacteria in milk samples were Escherichia (E.) coli (48.9%), Streptococcus (S.) spp. (18.1%), and Klebsiella (K.) spp. (16%). Obligatory anaerobic microorganisms were not isolated. In 72 cases (93.5%) of the aerobically examined blood samples, microbial growth was detected. The most-frequently isolated pathogens in blood samples were non-aureus Staphylococci (NaS) (40.6%) and Bacillus spp. (12.3%). The Limulus test was positive for 60.5% of cases, which means a detection of endotoxins in most blood samples without the growth of Gram-negative bacteria. Bacteremia was confirmed in 12 cases (15.5%) for K. pneumoniae (5/12), E. coli (4/12), S. dysgalactiae (2/12), and S. uberis (1/12). The mortality rate (deceased or culled) was 66.6% for cases with bacteremia and 34.1% for cases without bacteremia. High pathogen shedding and high humidity were associated with the occurrence of bacteremia in severe mastitis.
In this paper a new rotor position observer for permanent magnet synchronous machines (PMSM) based on an Extended-Kalman-Filter (EKF) is presented. With this method, just one single EKF is sufficent to evaluate the position information from electromotive force (EMF) and anisotropy. Thus, the PMSM can be controlled for the entire speed range without a position sensor and without the need to switch or synchronize between different observers. The approach covers online estimation of permanent magnetic field and mechanical load. The resulting EKF-based rotor position estimator is embedded in the existing cascaded control concept of the PMSM without need of additional angle trackers or signal filters. The experimental validation for the position sensorless control shows optimized dynamic behaviour.
To effectively prevent and control bovine mastitis, farmers and their advisors need to take infection pathways and durations into account. Still, studies exploring both aspects through molecular epidemiology with sampling of entire dairy cow herds over longer periods are scarce. Therefore, quarter foremilk samples were collected at 14-d intervals from all lactating dairy cows (n = 263) over 18 wk in one commercial dairy herd. Quarters were considered infected with Staphylococcus aureus, Streptococcus uberis, or Streptococcus dysgalactiae when ≥100 cfu/mL of the respective pathogen was detected, or with Staphylococcus epidermidis or Staphylococcus haemolyticus when ≥500 cfu/mL of the respective pathogen was detected. All isolates of the mentioned species underwent randomly amplified polymorphic DNA (RAPD)-PCR to explore strain diversity and to distinguish ongoing from new infections. Survival analysis was used to estimate infection durations. Five different strains of Staph. aureus were isolated, and the most prevalent strain caused more than 80% of all Staph. aureus infections (n = 46). In contrast, 46 Staph. epidermidis and 69 Staph. haemolyticus strains were isolated, and none of these caused infections in more than 2 different quarters. The 3 most dominant strains of Strep. dysgalactiae (7 strains) and Strep. uberis (18 strains) caused 81% of 33 and 49% of 37 infections in total, respectively. The estimated median infection duration for Staph. aureus was 80 d, and that for Staph. epidermidis and Staph. haemolyticus was 28 and 22 d, respectively. The probability of remaining infected with Strep. dysgalactiae or Strep. uberis for more than 84 and 70 d was 58.7 and 53.5%, respectively. Staphylococcus epidermidis and Staph. haemolyticus were not transmitted contagiously and the average infection durations were short, which brings into question whether antimicrobial treatment of intramammary infections with these organisms is justified. In contrast, infections with the other 3 pathogens lasted longer and largely originated from contagious transmission.
To design cost-effective prevention strategies against mastitis in dairy cow farms, knowledge about infection pathways of causative pathogens is necessary. Therefore, we investigated the reservoirs of bacterial strains causing intramammary infections in one dairy cow herd. Quarter foremilk samples (n = 8056) and milking- and housing-related samples (n = 251; from drinking troughs, bedding material, walking areas, cow brushes, fly traps, milking liners, and milker gloves), were collected and examined using culture-based methods. Species were identified with MALDI-TOF MS, and selected Staphylococcus and Streptococcus spp. typed with randomly amplified polymorphic DNA-PCR. Staphylococci were isolated from all and streptococci from most investigated locations. However, only for Staphylococcus aureus, matching strain types (n = 2) were isolated from milk and milking-related samples (milking liners and milker gloves). Staphylococcus epidermidis and Staphylococcus haemolyticus showed a large genetic diversity without any matches of strain types from milk and other samples. Streptococcus uberis was the only Streptococcus spp. isolated from milk and milking- or housing-related samples. However, no matching strains were found. This study underlines the importance of measures preventing the spread of Staphylococcus aureus between quarters during milking.
Antimicrobials are widely used to cure intramammary infections (IMI) in dairy cows during the dry period (DP). Nevertheless, the IMI cure is influenced by many factors and not all quarters benefit from antimicrobial dry cow treatment (DCT). To evaluate the true effect of antibiotic DCT compared to self-cure and the role of causative pathogens on the IMI cure, a retrospective cross-sectional study was performed. The analysis included 2987 quarters infected at dry-off (DO). Information on DCT, causative pathogens, somatic cell count, milk yield, amount of lactation, Body Condition Score, and season and year of DO were combined into categorical variables. A generalized linear mixed model with a random cow, farm and year effect and the binary outcome of bacteriological cure of IMI during the DP was conducted. In the final model, a significant effect (p < 0.05) on DP cure was seen for the DO season and the category of causative pathogens (categories being: Staphylococcus aureus, non-aureus staphylococci, streptococci, coliforms, ‘other Gram-negative bacteria’, ‘other Gram positive bacteria’, non-bacterial infections and mixed infections), while antibiotic DCT (vs. non-antibiotic DCT) only showed a significant effect in combination with the pathogen categories streptococci and ‘other Gram-positive bacteria’.
One of the main concerns of this publication is to furnish a more rational basis for discussing bioplastics and use fact-based arguments in the public discourse. Furthermore, “Biopolymers – facts and statistics” aims to provide specific, qualified answers easily and quickly for decision-makers in particular from public administration and the industrial sector. Therefore, this publication is made up like a set of rules and standards and largely foregoes textual detail. It offers extensive market-relevant and technical facts presented in graphs and charts, which means that the information is much easier to grasp. The reader can expect comparative market figures for various materials, regions, applications, process routes, agricultural land use, water use or resource consumption, production capacities, geographic distribution, etc.
During machine milking, pathogenic microorganisms can be transmitted from cow to cow through liners. Therefore, in Germany, a spray method for the intermediate disinfection of the milking cluster is often used for prevention. This method of cluster disinfection is easy to perform, requires little time and no extra materials, and the disinfection solution is safe from outside contamination in the spray bottle. Since no data on a systematic efficacy trial are available, the aim of this study was to determine the microbial reduction effect of intermediate disinfection. Therefore, laboratory and field trials were conducted. In both trials, two sprays of 0.85 mL per burst of different disinfectant solutions were sprayed into the contaminated liners. For sampling, a quantitative swabbing method using a modified wet–dry swab (WDS) technique based on DIN 10113-1: 1997-07 was applied. Thus, the effectiveness of disinfectants based on Peracetic Acid, Hydrogen Peroxide and Plasma-Activated Buffered Solution (PABS) was compared. In the laboratory trial, the inner surfaces of liners were contaminated with pure cultures of Escherichia (E.) coli, Staphylococcus (S.) aureus, Streptococcus (Sc.) uberis and Sc. agalactiae. The disinfection of the contaminated liners with the disinfectants resulted in a significant reduction in bacteria with values averaging 1 log for E. coli, 0.7 log for S. aureus, 0.7 log for Sc. uberis and 0.8 log for Sc. agalactiae. The highest reduction was obtained for contamination with E. coli (1.3 log) and Sc. uberis (0.8 log) when PABS was applied and for contamination with S. aureus (1.1 log) and Sc. agalactiae (1 log) when Peracetic Acid Solution (PAS) was used. Treatment with sterile water only led to an average reduction of 0.4 log. In the field trial, after the milking of 575 cows, the liners were disinfected and the total microorganism count from the liner surface was performed. The reduction was measured against an untreated liner within the cluster. Although a reduction in microorganisms was achieved in the field trial, it was not significant. When using PAS, a log reduction of 0.3 was achieved; when using PABS, a log reduction of 0.2 was obtained. The difference between the two disinfection methods was also not significant. Treatment with sterile water only led to a reduction of 0.1 log. The results show that spray disinfection under these circumstances does result in a reduction in the bacteria on the milking liner surface, but for effective disinfection a higher reduction would be preferred.
One of the main concerns of this publication is to furnish a more rational basis for discussing bioplastics and use fact-based arguments in the public discourse. Furthermore, “Biopolymers – facts and statistics” aims to provide specific, qualified answers easily and quickly for decision-makers in particular from public administration and the industrial sector. Therefore, this publication is made up like a set of rules and standards and largely foregoes textual detail. It offers extensive market-relevant and technical facts presented in graphs and charts, which means that the information is much easier to grasp. The reader can expect comparative market figures for various materials, regions, applications, process routes, agricultural land use, water use or resource consumption, production capacities, geographic distribution, etc.