Refine
Year of publication
Document Type
- Bachelor Thesis (7)
- Master's Thesis (3)
- Report (3)
- Article (2)
- Conference Proceeding (1)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Lernsoftware (5)
- Moodle (5)
- E-Learning (4)
- LON-CAPA (4)
- Theoretische Informatik (3)
- GraFLAP (2)
- Grappa (2)
- JFLAP (2)
- LMS (2)
- Maxima <Programm> (2)
Institute
The question type STACK in the learning management system Moodle is well suited for mathematical questions in higher education courses. Since theoretical computer science is rather close to mathematics, we developed STACK questions for this topic in order to train our students in using abstract notation. Because STACK and the underlying computer algebra system Maxima are not made for dealing with strings, we needed some special functions for our purposes.
At University of Applied Sciences and Arts Hannover, LON-CAPA is used as a learning management system beside Moodle. LON-CAPA has a strong focus on e-assessment in mathematics and sciences. We used LON-CAPA in Hannover mainly in mathematics courses.
Since theoretical computer science needs a lot of mathematics, this course is also well-suited for e-assessment in LON-CAPA. Beside this, we already used JFLAP as an interactive tool to deal with automata, machines and grammars in theoretical computer science. In LON-CAPA, there exists a possibility of using external graders to grade problems.
We decided to write a grading engine (with JFLAP inside) to grade automata, machines and grammars handed in by students and to couple this with LON-CAPA. This report describes the types of questions that are now possible with this grader and how they can be authored in LON-CAPA.
Grammars, automata, and machines in theoretical computer science can be viewed as specialized types of programs. Automata and grammars can be graded automatically using sets of words that either belong or don't belong to the corresponding language. For machines, traditional unit testing with predefined input and output can be performed. Additionally, we can verify whether automata, grammars, or machines are of the requested type. Students use JFLAP for constructing and testing automata and machines. Our grading system, GraFLAP, builds upon JFLAP and includes additional testing capabilities. We provide tasks in ProFormA format and utilize Grappa to connect the grader to Moodle.
In this paper we describe methods to approximate functions and differential operators on adaptive sparse (dyadic) grids. We distinguish between several representations of a function on the sparse grid and we describe how finite difference (FD) operators can be applied to these representations. For general variable coefficient equations on sparse grids, genuine finite element (FE) discretizations are not feasible and FD operators allow an easier operator evaluation than the adapted FE operators. However, the structure of the FD operators is complex. With the aim to construct an efficient multigrid procedure, we analyze the structure of the discrete Laplacian in its hierarchical representation and show the relation between the full and the sparse grid case. The rather complex relations, that are expressed by scaling matrices for each separate coordinate direction, make us doubt about the possibility of constructing efficient preconditioners that show spectral equivalence. Hence, we question the possibility of constructing a natural multigrid algorithm with optimal O(N) efficiency. We conjecture that for the efficient solution of a general class of adaptive grid problems it is better to accept an additional condition for the dyadic grids (condition L) and to apply adaptive hp-discretization.
Metagenomic studies use high-throughput sequence data to investigate microbial communities in situ. However, considerable challenges remain in the analysis of these data, particularly with regard to speed and reliable analysis of microbial species as opposed to higher level taxa such as phyla. We here present Genometa, a computationally undemanding graphical user interface program that enables identification of bacterial species and gene content from datasets generated by inexpensive high-throughput short read sequencing technologies. Our approach was first verified on two simulated metagenomic short read datasets, detecting 100% and 94% of the bacterial species included with few false positives or false negatives. Subsequent comparative benchmarking analysis against three popular metagenomic algorithms on an Illumina human gut dataset revealed Genometa to attribute the most reads to bacteria at species level (i.e. including all strains of that species) and demonstrate similar or better accuracy than the other programs. Lastly, speed was demonstrated to be many times that of BLAST due to the use of modern short read aligners. Our method is highly accurate if bacteria in the sample are represented by genomes in the reference sequence but cannot find species absent from the reference. This method is one of the most user-friendly and resource efficient approaches and is thus feasible for rapidly analysing millions of short reads on a personal computer.
We have used LON-CAPA for computer-aided assessment of problems in mathematics and computer science for several years and are now in the process to migrate to Moodle. We developed the tool LC2Mdl that allows half-automatic migration of several types of LON-CAPA problems to Moodle STACK XML files. Both systems allow randomization and use Maxima as the computer algebra system in the background. In LON-CAPA most parts are written in Perl which is not supported by Moodle in any way. So, fully automatic migration is not possible. Usually, you will have to do additional work by hand. But LC2Mdl saves a lot of time in this migration process.
Der Autobewerter Graja, der in der Lehre zum Bewerten studentischer Java-Programme verwendet wird, stellt ein komplexes Softwaresystem dar. Aufgrund einer kaum vorhandenen Testabdeckung durch Modul- und Integrationstests, ist die Gewährleistung der fehlerfreien Funktionalität in Hinsicht auf die Weiterentwicklung nicht garantiert. Da sich Graja auf das ProFormA-Aufgabenformat stützt, stellt sich die Frage, inwiefern sich die im ProFormA-Aufgabenformat vorausgesetzten Musterlösungen, für einen automatisierten Regressionstestmechanismus eignen.
Das Ziel dieser Forschung ist es ein Konzept, für einen solchen Regressionstestmechanismus zu erstellen und mithilfe einer Referenzimplementierung als Graja-Erweiterung in die Praxis umzusetzen. Der daraus entstandene Mechanismus operiert durch Verhaltensaufzeichnung und Verhaltensabgleich und konvertiert so das in Graja beobachtete Bewertungsverhalten einer Musterlösung in einen Testfall. In der Testphase findet anschließend ein Abgleich des Soll-Verhaltens eines Testfalls und des beobachteten Ist-Verhaltens einer Musterlösung statt. Die Differenzen dieses Abgleichs sind als potenzielle Regressionen zu behandeln, da diese eine semantische Änderung des Bewertungsergebnisses darstellen.
Um diesen Verhaltensabgleich robust und mit möglichst wenigen Fehlalarme zu realisieren, wurden die in Graja verwendeten Datenmodelle auf Eignung bezüglich einer Verhaltensaufzeichnung untersucht. Außerdem fand eine Datenaufzeichnung mit einer Teilmenge der Musterlösungen statt. Nachfolgend wurde eine Analyse dieser Rohdaten, mit dem Ziel potenzielles Rauschen innerhalb der Aufzeichnungen zu detektieren, durchgeführt. So konnte letztendlich eine Strategie für eine Rauschunterdrückung innerhalb der Verhaltensaufzeichnung entwickelt werden.
Abschließend wurde ein Datenmodell entwickelt, das erlaubt, die durch den Verhaltensabgleich detektierten Regressionen verständlich und lokalisierbar darzustellen. Der durch diese Arbeit entstandene automatisierte Regressionstestmechanismus stellt somit eine Grundlage für die Gewährleistung der korrekten Bewertungsfunktionalität innerhalb des Graja-Entwicklungsprozesses dar. Durch das Detektieren von Regressionen mithilfe der Musterlösungen, lassen sich nun Änderungen an Graja gewissenhaft in eine Produktionsumgebung übernehmen.
Bisher wurde die automatisierte Bewertung von Übungsaufgaben in LON-CAPA angeboten und mit mehreren Werkzeugen umgesetzt, darunter der JFLAP-Wrapper, der die Grundlage dieser Arbeit bildet. Daraus soll ein vollständiges eigenstehendes Programm erarbeitet werden, dass auch an andere Lernmanagementsysteme angebunden werden kann. Dabei erhält es den neuen Namen GraFLAP. Dazu wurden die Bewertungsprozesse im JFLAP-Wrapper zusammen gelegt und eine neue Schnittstelle nach ProFormA-2.1-Standard ergänzt. Außerdem sollte die Wartbarkeit verbessert werden, sodass zukünftige weiterführende Arbeiten erleichtert werden. Dazu wurden neue Datenstrukturen und Prozesse integriert, unter anderem ein einheitlicher Build-Prozess mit Maven und automatisierte Tests mit JUnit. GraFLAP bietet nun eine standardisierte Schnittstelle, übernimmt alle Bewertungsprozesse und ist so nun vollständig unabhängig von Lernmanagementsystemen.
Bluetooth ist ein weit verbreitetes drahtloses Übertragungsprotokoll, das in vielen mobilen Geräten wie bspw. Tablets, Kopfhörer oder Smartwatches verwendet wird. Bluetooth-fähige Geräte senden mehrmals pro Minute öffentliche Advertisements, die u.a. die einzigartige MAC-Adresse des Gerätes beinhalten. Das Mitschneiden dieser Advertisements mittels Bluetooth-Logger ermöglicht es, Bewegungen der Geräte zu analysieren und lassen somit Rückschlüsse auf die Bewegungen der Besitzenden zu.
Zum Schutz der Privatsphäre werden seit 2014 zufällig erzeugte MAC-Adressen in Advertisements verwendet. Eine sog. randomisierte MAC-Adresse bleibt durchschnittlich 15 Minuten lang gültig und wird dann durch eine neue zufällige Adresse ersetzt. Der Aufenthalt eines Geräts zu einem späteren Zeitpunkt kann nicht bestimmt werden. Dennoch kann der Wechsel eines Geräts von einem Bluetooth-Logger zu einem anderen innerhalb dieser 15 Minuten erkannt und somit eine Bewegung des Gerätes abgeleitet werden.
Durch Apps der Kontaktpersonennachverfolgung wie die Corona-Warn-App (CWA) senden auch vermeintlich inaktive Smartphones Bluetooth-Advertisements. Mit etwa einem Viertel der Aufzeichnungen unterstützt die CWA die Auswertungen dieser experimentellen Arbeit.
Um die praktische Anwendbarkeit zu demonstrieren, wurde der Erlebniszoo Hannover als Testgelände genutzt. Die Auswertung der über sieben Wochen gesammelten Daten ermöglichte die Analyse von Stoßzeiten, stark besuchten Orten und Besucherströmen.
An der Hochschule Hannover soll die Lernplattform LON-CAPA von Moodle-STACK abgelöst werden. Dazu werden Aufgaben von LON-CAPA nach Moodle-STACK konvertiert. Durch die Entwicklung eines Konverters kann ein großer Teil dieser Arbeit automatisiert erfolgen. Aufgrund der potentiellen Komplexität von LON-CAPA-Aufgaben ist nicht jede Aufgabe in vollem Umfang zu übersetzen und eine manuelle Nacharbeit notwendig.
In dieser Arbeit werden die LON-CAPA-Antworttypen numerical, formula und math response analysiert. Es wird untersucht, wie LON-CAPA-Aufgabenelemente einzeln umgewandelt werden können und welche Parameter im Moodle-STACK-Format gesetzt werden müssen, um eine äquivalente Aufgabe in Moodle-STACK zu erhalten.
Die technische Umsetzung erfolgt in Java. Der modulare Aufbau sieht Wartbarkeit und Weiterentwicklung vor. Auf GitHub steht die Implementierung unter der GPL (GNU General Public License) zur Verfügung: https://github.com/kiliandangendorf/lc2mdl