Refine
Document Type
- Article (20)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- Euterentzündung (14)
- Milchvieh (4)
- bovine mastitis (4)
- mastitis (4)
- Corynebacterium (3)
- Euter (3)
- Risikofaktor (3)
- severe mastitis (3)
- staphylococci (3)
- streptococci (3)
Institute
To design cost-effective prevention strategies against mastitis in dairy cow farms, knowledge about infection pathways of causative pathogens is necessary. Therefore, we investigated the reservoirs of bacterial strains causing intramammary infections in one dairy cow herd. Quarter foremilk samples (n = 8056) and milking- and housing-related samples (n = 251; from drinking troughs, bedding material, walking areas, cow brushes, fly traps, milking liners, and milker gloves), were collected and examined using culture-based methods. Species were identified with MALDI-TOF MS, and selected Staphylococcus and Streptococcus spp. typed with randomly amplified polymorphic DNA-PCR. Staphylococci were isolated from all and streptococci from most investigated locations. However, only for Staphylococcus aureus, matching strain types (n = 2) were isolated from milk and milking-related samples (milking liners and milker gloves). Staphylococcus epidermidis and Staphylococcus haemolyticus showed a large genetic diversity without any matches of strain types from milk and other samples. Streptococcus uberis was the only Streptococcus spp. isolated from milk and milking- or housing-related samples. However, no matching strains were found. This study underlines the importance of measures preventing the spread of Staphylococcus aureus between quarters during milking.
To effectively prevent and control bovine mastitis, farmers and their advisors need to take infection pathways and durations into account. Still, studies exploring both aspects through molecular epidemiology with sampling of entire dairy cow herds over longer periods are scarce. Therefore, quarter foremilk samples were collected at 14-d intervals from all lactating dairy cows (n = 263) over 18 wk in one commercial dairy herd. Quarters were considered infected with Staphylococcus aureus, Streptococcus uberis, or Streptococcus dysgalactiae when ≥100 cfu/mL of the respective pathogen was detected, or with Staphylococcus epidermidis or Staphylococcus haemolyticus when ≥500 cfu/mL of the respective pathogen was detected. All isolates of the mentioned species underwent randomly amplified polymorphic DNA (RAPD)-PCR to explore strain diversity and to distinguish ongoing from new infections. Survival analysis was used to estimate infection durations. Five different strains of Staph. aureus were isolated, and the most prevalent strain caused more than 80% of all Staph. aureus infections (n = 46). In contrast, 46 Staph. epidermidis and 69 Staph. haemolyticus strains were isolated, and none of these caused infections in more than 2 different quarters. The 3 most dominant strains of Strep. dysgalactiae (7 strains) and Strep. uberis (18 strains) caused 81% of 33 and 49% of 37 infections in total, respectively. The estimated median infection duration for Staph. aureus was 80 d, and that for Staph. epidermidis and Staph. haemolyticus was 28 and 22 d, respectively. The probability of remaining infected with Strep. dysgalactiae or Strep. uberis for more than 84 and 70 d was 58.7 and 53.5%, respectively. Staphylococcus epidermidis and Staph. haemolyticus were not transmitted contagiously and the average infection durations were short, which brings into question whether antimicrobial treatment of intramammary infections with these organisms is justified. In contrast, infections with the other 3 pathogens lasted longer and largely originated from contagious transmission.
During machine milking, pathogenic microorganisms can be transmitted from cow to cow through liners. Therefore, in Germany, a spray method for the intermediate disinfection of the milking cluster is often used for prevention. This method of cluster disinfection is easy to perform, requires little time and no extra materials, and the disinfection solution is safe from outside contamination in the spray bottle. Since no data on a systematic efficacy trial are available, the aim of this study was to determine the microbial reduction effect of intermediate disinfection. Therefore, laboratory and field trials were conducted. In both trials, two sprays of 0.85 mL per burst of different disinfectant solutions were sprayed into the contaminated liners. For sampling, a quantitative swabbing method using a modified wet–dry swab (WDS) technique based on DIN 10113-1: 1997-07 was applied. Thus, the effectiveness of disinfectants based on Peracetic Acid, Hydrogen Peroxide and Plasma-Activated Buffered Solution (PABS) was compared. In the laboratory trial, the inner surfaces of liners were contaminated with pure cultures of Escherichia (E.) coli, Staphylococcus (S.) aureus, Streptococcus (Sc.) uberis and Sc. agalactiae. The disinfection of the contaminated liners with the disinfectants resulted in a significant reduction in bacteria with values averaging 1 log for E. coli, 0.7 log for S. aureus, 0.7 log for Sc. uberis and 0.8 log for Sc. agalactiae. The highest reduction was obtained for contamination with E. coli (1.3 log) and Sc. uberis (0.8 log) when PABS was applied and for contamination with S. aureus (1.1 log) and Sc. agalactiae (1 log) when Peracetic Acid Solution (PAS) was used. Treatment with sterile water only led to an average reduction of 0.4 log. In the field trial, after the milking of 575 cows, the liners were disinfected and the total microorganism count from the liner surface was performed. The reduction was measured against an untreated liner within the cluster. Although a reduction in microorganisms was achieved in the field trial, it was not significant. When using PAS, a log reduction of 0.3 was achieved; when using PABS, a log reduction of 0.2 was obtained. The difference between the two disinfection methods was also not significant. Treatment with sterile water only led to a reduction of 0.1 log. The results show that spray disinfection under these circumstances does result in a reduction in the bacteria on the milking liner surface, but for effective disinfection a higher reduction would be preferred.
In this species differentiation study of Corynebacterium spp. (C. spp.), quarter foremilk samples from 48 farms were included. These were obtained from both clinically healthy cows and those with clinical mastitis. First, all samples were examined cyto-microbiologically and all catalase-positive rods were differentiated using the direct transfer method in MALDI-TOF MS. C. bovis, C. amycolatum, C. xerosis, and five other species were identified with proportions of 90.1%, 7.7%, and 0.8% for the named species, respectively, and 1.4% for the remaining unnamed species. In addition, somatic cell count (SCC) was determined by flow cytometry. Based on this, the isolates were classified into four udder health groups: “latent infection”, “subclinical mastitis”, “clinical mastitis” and “others”. Approximately 90% of isolates of C. bovis and C. amycolatum were from latently and subclinically infected quarters. Of the C. bovis isolates, 5.8% were obtained from milk samples from clinical mastitis, whereas C. amycolatum was not present in clinical mastitis. The distribution of groups in these two species differed significantly. The geometric mean SCC of all species combined was 76,000 SCC/mL, almost the same as the SCC of C. bovis. With 50,000 SCC/mL, the SCC of C. amycolatum was slightly below the SCC of C. bovis. Through the species-level detection and consideration of SCC performed here, it is apparent that individual species differ in terms of their pathogenicity. Overall, their classification as minor pathogens with an SCC increase is confirmed.
Although Corynebacterium spp. can be regularly associated with subclinical and clinical mastitis cases in dairy cows, knowledge on their reservoirs in dairy farms is sparse. Therefore, samples were collected at 10 visits with 14 day intervals from bedding material (n = 50), drinking troughs (n = 20), different walking areas (n = 60), cow brushes (n = 8), fly traps (n = 4), the passage to pasture (n = 9) as well as milking liners (n = 80) and milker gloves (n = 20) in one dairy cow farm. Additionally, quarter foremilk samples from all lactating cows (approximately 200) were collected at each visit. All samples underwent microbiological examination and cultured isolates were identified using MALDI-TOF MS. Most Corynebacterium spp. that were cultivated from milk were also isolated from the housing environment and milking-related niches (C. amycolatum, C. confusum, C. stationis, C. variabile, C. xerosis) or from milking-related niches only (C. frankenforstense, C. pilosum, C. suicordis). C. bovis was not cultivated from any environmental niche, while being the dominant species in milk samples. This study demonstrates that many Corynebacterium spp. present in milk samples can also be isolated from the cows’ environment. For C. bovis, the most relevant Corynebacterium species with regard to intramammary infections, it indicates that environmental reservoirs are of little relevance.
In order to reduce antimicrobial treatment and prevent environmental mastitis, the aim of the present study was to investigate associations between herd level factors and microbial load on teat ends with environmental mastitis pathogens. Quarterly farm visits of 31 dairy farms over a one-year period were used for statistical analysis. During each farm visit, teat-skin swabs, bedding and air samples were taken and management practices and herd parameters were documented. Total mesophilic bacteria, esculin-positive streptococci and coliform bacteria were examined in the laboratory procedures from teat skin and environmental samples. Esculin-positive streptococci and coliform bacteria on teat ends increased with high temperature–humidity indices (THI) in the barn during the spring and summer. Significantly more coliform bacteria on teat ends were found in herds with an increased percentage of normal or slightly rough teat ends. Cleaning cubicles more frequently, pre-cleaning teats before milking as well as post-dipping them after milking had a decreasing effect of teat-skin load with total mesophilic and coliform bacteria at the herd level. To conclude, teat-skin bacterial load with environmental pathogens is subject to fluctuations and can be influenced by aspects of farm hygiene.
Corynebacterium spp. are frequently detected in bovine quarter milk samples, yet their impact on udder health has not been determined completely. In this longitudinal study, we collected quarter milk samples from a dairy herd of approximately 200 cows, ten times at 14 d intervals. Bacteriologically, Catalase-positive and Gram-positive rods were detected in 22.7% of the samples. For further species diagnosis, colonies were analyzed by MALDITOF MS. Corynebacterium bovis, C. amycolatum, C. xerosis and 10 other Corynebacterium spp. were detected. The three aforementioned species accounted for 88.4%, 8.65% and 0.94% of all cultured Corynebacterium spp., respectively. For further evaluation of infection dynamics, the following three infection definitions were applied: A (2/3 consecutive samples positive for the same species), B (≥1000 cfu/mL in one sample), C (isolated from a clinical mastitis case). Infections according to definition B occurred most frequently and clinical mastitis with Corynebacterium spp. occurred once during sampling. Life tables were used to determine the duration of infection. According to infection definition A, infection durations of 111 d and 98 d were obtained for C. bovis and C. amycolatum, respectively. Exemplarily, longer lasting infections were examined for their strain diversity by RAPD PCR. A low strain diversity was found in the individual quarters that indicates a longer colonization of the udder parenchyma by C. bovis and C. amycolatum.
A nonblinded, positively controlled, noninferiority trial was conducted to evaluate the efficacy of an alternative, nonantibiotic therapy with Masti Veyxym® to reduce ineffective antibiotic usage in the treatment of nonsevere clinical mastitis (CM) in cows with longer lasting udder diseases. The solely intramammary treatment with Masti Veyxym® (three applications, 12 hr apart) and the combined treatment with Masti Veyxym® and antibiotics as usual on the farm according to label of the respective product were compared with the reference treatment of solely antibiotic therapy. The matched field study was conducted on eight free-stall dairy farms located in Eastern Germany. Cases of mild-to-moderate CM in cows with longer lasting high somatic cell counts in preceding dairy herd improvement test days and with previous CM cases in current lactation were randomly allocated to one of the three treatment groups. A foremilk sample of the affected quarter was taken before treatment and again approximately 14 days and 21 days after the end of therapy for cyto-bacteriological examination. Primary outcomes were clinical cure (CC) and no CM recurrence within 60 days after the end of treatment (no R60). Bacteriological cure (BC) and quarter somatic cell count (QSCC) cure were chosen as secondary outcomes although low probabilities of BC and QSCC cure for selected cows were expected. The study resulted in the following findings: the pathogens mostly cultured from pretreatment samples were Streptococcus uberis, followed by Staphylococcus aureus and coagulase-negative staphylococci. There were no significant differences between the two test treatments in comparison with the reference treatment regarding all outcome variables. The sole therapy with Masti Veyxym® resulted in a numerically lower likelihood of BC without significant differences to the reference treatment. The combined therapy group showed a numerically higher nonrecurrence rate than the two other treatment groups and noninferiority compared to the reference treatment was proven. Having regard to the selection criteria of cows in this study, the findings indicated that sole treatment with Masti Veyxym® in nonsevere CM cases may constitute an alternative therapy to reduce antibiotics. However, noninferiority evaluations were mostly inconclusive. Further investigations with a larger sample size are required to confirm the results and to make a clear statement on noninferiority.
The present research study investigated the susceptibility of common mastitis pathogens—obtained from clinical mastitis cases on 58 Northern German dairy farms—to routinely used antimicrobials. The broth microdilution method was used for detecting the Minimal Inhibitory Concentration (MIC) of Streptococcus agalactiae (n = 51), Streptococcus dysgalactiae (n = 54), Streptococcus uberis (n = 50), Staphylococcus aureus (n = 85), non-aureus staphylococci (n = 88), Escherichia coli (n = 54) and Klebsiella species (n = 52). Streptococci and staphylococci were tested against cefquinome, cefoperazone, cephapirin, penicillin, oxacillin, cloxacillin, amoxicillin/clavulanic acid and cefalexin/kanamycin. Besides cefquinome and amoxicillin/clavulanic acid, Gram-negative pathogens were examined for their susceptibility to marbofloxacin and sulfamethoxazole/trimethoprim. The examined S. dysgalactiae isolates exhibited the comparatively lowest MICs. S. uberis and S. agalactiae were inhibited at higher amoxicillin/clavulanic acid and cephapirin concentration levels, whereas S. uberis isolates additionally exhibited elevated cefquinome MICs. Most Gram-positive mastitis pathogens were inhibited at higher cloxacillin than oxacillin concentrations. The MICs of Gram-negative pathogens were higher than previously reported, whereby 7.4%, 5.6% and 11.1% of E. coli isolates had MICs above the highest concentrations tested for cefquinome, marbofloxacin and sulfamethoxazole/trimethoprim, respectively. Individual isolates showed MICs at comparatively higher concentrations, leading to the hypothesis that a certain amount of mastitis pathogens on German dairy farms might be resistant to frequently used antimicrobials.
Investigations on Transfer of Pathogens between Foster Cows and Calves during the Suckling Period
(2021)
To date, there have been few studies on the health effects of foster cow systems, including the transmission of mastitis-associated pathogens during suckling. The present study aimed to compare the pathogens detected in the mammary glands of the foster cow with those in the oral cavities of the associated foster calves and to evaluate the resulting consequences for udder health, calf health and internal biosecurity. Quarter milk sampling of 99 foster cows from an organic dairy farm was conducted twice during the foster period. Oral cavity swabs were taken from 345 foster calves. Furthermore, quarter milk samples were collected from 124 biological dams to investigate possible transmission to the foster cows via the suckling calves. All samples were microbiologically examined and confirmed by MALDI-TOF (matrix-assisted laser desorption time-offlight mass-spectrometry). Using RAPD-PCR (randomly amplified polymorphic DNA polymerase chain reaction), strain similarities were detected for Pasteurella multocida, Staphylococcus aureus, S. sciuri and Streptococcus (Sc.) suis. Transmission of P. multocida and S. aureus probably occurred during suckling. For S. sciuri and Sc. suis, environmental origins were assumed. Transmission from dam to foster cow with the suckling calf as vector could not be clearly demonstrated.