Refine
Document Type
- Article (29)
Language
- English (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- Euterentzündung (19)
- bovine mastitis (7)
- mastitis (6)
- Milchvieh (4)
- Corynebacterium (3)
- Färse (3)
- Milchkuh (3)
- Rind (3)
- Risikofaktor (3)
- Streptococcus uberis (3)
Institute
In order to reduce antimicrobial treatment and prevent environmental mastitis, the aim of the present study was to investigate associations between herd level factors and microbial load on teat ends with environmental mastitis pathogens. Quarterly farm visits of 31 dairy farms over a one-year period were used for statistical analysis. During each farm visit, teat-skin swabs, bedding and air samples were taken and management practices and herd parameters were documented. Total mesophilic bacteria, esculin-positive streptococci and coliform bacteria were examined in the laboratory procedures from teat skin and environmental samples. Esculin-positive streptococci and coliform bacteria on teat ends increased with high temperature–humidity indices (THI) in the barn during the spring and summer. Significantly more coliform bacteria on teat ends were found in herds with an increased percentage of normal or slightly rough teat ends. Cleaning cubicles more frequently, pre-cleaning teats before milking as well as post-dipping them after milking had a decreasing effect of teat-skin load with total mesophilic and coliform bacteria at the herd level. To conclude, teat-skin bacterial load with environmental pathogens is subject to fluctuations and can be influenced by aspects of farm hygiene.
To reduce the negative effects of mastitis in dairy heifers in early lactation on the future milking performance, the aim of this study was to define the time-related period of intramammary infections and to relate this to risk factors at heifer and quarter level for intramammary infections and subclinical mastitis. In total, 279 German Holstein Frisian heifers in three farms in Northern and Eastern Germany were included in this study. Quarter milk samples for cytomicrobiological examination were collected 3 +- 1 days after calving and 17 +- 3 days after calving, and risk factors
at heifer and quarter level associated with intramammary infections and clinical mastitis were recorded during the trial period. Data were analyzed using logistic regression procedures and odds ratios were calculated. Calving at older ages increased the odds of intramammary infections with non-aureus staphylococci (NAS) and coryneforms 17 +- 3 days after calving compared to heifers calving at a younger age. Detaching of milking cups during milking is a risk factor for new infections between day 3 +- 1 and 17 +- 3 postpartum. The milk yield after calving is associated with a decrease in intramammary infections with environmental pathogens and clinical mastitis. A high milk yield assists the development of udder edema with an increased risk of intramammary infections with NAS and coryneforms. An increased somatic cell count (SCC) after calving increased the odds of intramammary infections with contagious pathogens 17 +- 3 days postpartum. The early lactation has an important influence on udder health and intramammary infections postpartum in dairy heifers. Udder quarters eliminated pathogens during early lactation by 6.9% for cases in
this study. New infections manifest themselves up until 17 +- 3 days postpartum, especially with Corynebacterium spp. and NAS. In total, 82.9% of the infected quarters showed new infections with another pathogen species 17 +- 3 days postpartum than 3 +- 1 days postpartum. In conclusion, the early lactation has an important influence on udder health and intramammary infections postpartum in heifers with the possibility that udder quarters eliminate pathogens, but also the danger that new infections manifest themselves. Thus, the prevention of new infections by minimizing the associated risk factors is of great importance.
A nonblinded, positively controlled, noninferiority trial was conducted to evaluate the efficacy of an alternative, nonantibiotic therapy with Masti Veyxym® to reduce ineffective antibiotic usage in the treatment of nonsevere clinical mastitis (CM) in cows with longer lasting udder diseases. The solely intramammary treatment with Masti Veyxym® (three applications, 12 hr apart) and the combined treatment with Masti Veyxym® and antibiotics as usual on the farm according to label of the respective product were compared with the reference treatment of solely antibiotic therapy. The matched field study was conducted on eight free-stall dairy farms located in Eastern Germany. Cases of mild-to-moderate CM in cows with longer lasting high somatic cell counts in preceding dairy herd improvement test days and with previous CM cases in current lactation were randomly allocated to one of the three treatment groups. A foremilk sample of the affected quarter was taken before treatment and again approximately 14 days and 21 days after the end of therapy for cyto-bacteriological examination. Primary outcomes were clinical cure (CC) and no CM recurrence within 60 days after the end of treatment (no R60). Bacteriological cure (BC) and quarter somatic cell count (QSCC) cure were chosen as secondary outcomes although low probabilities of BC and QSCC cure for selected cows were expected. The study resulted in the following findings: the pathogens mostly cultured from pretreatment samples were Streptococcus uberis, followed by Staphylococcus aureus and coagulase-negative staphylococci. There were no significant differences between the two test treatments in comparison with the reference treatment regarding all outcome variables. The sole therapy with Masti Veyxym® resulted in a numerically lower likelihood of BC without significant differences to the reference treatment. The combined therapy group showed a numerically higher nonrecurrence rate than the two other treatment groups and noninferiority compared to the reference treatment was proven. Having regard to the selection criteria of cows in this study, the findings indicated that sole treatment with Masti Veyxym® in nonsevere CM cases may constitute an alternative therapy to reduce antibiotics. However, noninferiority evaluations were mostly inconclusive. Further investigations with a larger sample size are required to confirm the results and to make a clear statement on noninferiority.
Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight different countries that were genotyped by RS-PCR and investigated for 26 different virulence factors to increase the knowledge on the circulating genetic lineages among the cow population with mastitis. New genotypes were observed for South African strains while for all the other countries new variants of existing genotypes were detected. For each country, a specific genotypic pattern was found. Among the virulence factors, fmtB, cna, clfA and leucocidins genes were the most frequent. The sea and sei genes were present in seven out of eight countries; seh showed high frequency in South American countries (Brazil, Colombia, Argentina), while sel was harboured especially in one Mediterranean country (Tunisia). The etb, seb and see genes were not detected in any of the isolates, while only two isolates were MRSA (Germany and Italy) confirming the low diffusion of methicillin resistance microorganism among bovine mastitis isolates. This work demonstrated the wide variety of S. aureus genotypes found in dairy cattle worldwide. This condition suggests that considering the region of interest might help to formulate strategies for reducing the infection spreading.
The objective of this study was to investigate the association between teat skin colonization and intramammary infection (IMI) with Staphylococcus aureus or Streptococcus agalactiae at the quarter level in herds with automatic milking systems. Milk and teat skin samples from 1,142 quarters were collected from 300 cows with somatic cell count >200,000 cells/mL from 8 herds positive for Strep. agalactiae. All milk and teat skin samples were cultured on calf blood agar and selective media. A subset of samples from 287 quarters was further analyzed using a PCR assay (Mastit4 PCR; DNA Diagnostic A/S, Risskov, Denmark). Bacterial culture detected Staph. aureus in 93 (8.1%) of the milk samples and 75 (6.6%) of the teat skin samples. Of these, 15 (1.3%) quarters were positive in both the teat skin and milk samples. Streptococcus agalactiae was cultured in 84 (7.4%) of the milk samples and 4 (0.35%) of the teat skin samples. Of these, 3 (0.26%) quarters were positive in both the teat skin and milk samples. The PCR detected Staph. aureus in 29 (10%) of the milk samples and 45 (16%) of the teat skin samples. Of these, 2 (0.7%) quarters were positive in both the teat skin and milk samples. Streptococcus agalactiae was detected in 40 (14%) of the milk samples and 51 (18%) of the teat skin samples. Of these, 16 (5.6%) quarters were positive in both the teat skin and milk samples. Logistic regression was used to investigate the association between teat skin colonization and IMI at the quarter level. Based on bacterial culture results, teat skin colonization with Staph. aureus resulted in 7.8 (95% confidence interval: 2.9; 20.6) times higher odds of Staph. aureus IMI, whereas herd was observed as a major confounder. However, results from the PCR analyses did not support this association. Streptococcus agalactiae was isolated from the teat skin with both PCR and bacterial culture, but the number of positive teat skin samples detected by culture was too low to proceed with further analysis. Based on the PCR results, Strep. agalactiae on teat skin resulted in 3.8 (1.4; 10.1) times higher odds of Strep. agalactiae IMI. Our results suggest that Staph. aureus and Strep. agalactiae on teat skin may be a risk factor for IMI with the same pathogens. Focus on proper teat skin hygiene is therefore recommended also in AMS.
Mastitis poses a considerable threat to productivity and to animal welfare on modern dairy farms. However, the common way of antibiotic treatment does not always lead to a cure. Unsuccessful cures can, among other reasons, occur due to biofilm formation of the causative agent. This has attracted interest from researchers to introduce promising alternative therapeutic approaches, such as the use of beneficial lactic acid bacteria (LAB). In fact, using LAB for treating mastitis probably requires the formation of a beneficial biofilm by the probiotic bacteria. The present study investigated the ability of five LAB strains, selected on the basis of results from previous studies, to remove and to replace pathogenic biofilms in vitro. For this purpose, Staphylococcus (S.) aureus ATCC 12,600 and two strains—S. xylosus (35/07) and S. epidermidis (575/08)—belonging to the group of coagulase negative staphylococci (CNS) were allowed to form biofilms in a 96-well plate. Subsequently, the LAB were added to the well. The biofilm challenge was evaluated by scraping off and suspending the biofilm cells, followed by a plate count of serial dilutions using selective media. All the LAB strains successfully removed the staphylococcal biofilms. However, only Lactobacillus (L.) rhamnosus ATCC 7469 and L. plantarum 2/37 formed biofilms of their own to replace the pathogenic ones.
The lytic efficacy of bacteriophages against Staphylococcus aureus isolates from bovine milk was investigated in vitro, regarding possible applications in the therapy of udder inflammation caused by bacterial infections (mastitis). The host range of sequenced, lytic bacteriophages was determined against a collection of 92 Staphylococcus (S.) aureus isolates. The isolates originated from quarter foremilk samples of clinical and subclinical mastitis cases. A spot test and a subsequent plaque assay were used to determine the phage host range. According to their host range, propagation and storage properties, three phages, STA1.ST29, EB1.ST11, and EB1.ST27, were selected for preparing a bacteriophage mixture (1:1:1), which was examined for its lytic activity against S. aureus in pasteurized and raw milk. It was found that almost two thirds of the isolates could be lysed by at least one of the tested phages. The bacteriophage mixture was able to reduce the S. aureus germ density in pasteurized milk and its reduction ability was maintained in raw milk, with only a moderate decrease compared to the results in pasteurized milk. The significant reduction ability of the phage mixture in raw milk promotes further in vivo investigation.
The present research study investigated the susceptibility of common mastitis pathogens—obtained from clinical mastitis cases on 58 Northern German dairy farms—to routinely used antimicrobials. The broth microdilution method was used for detecting the Minimal Inhibitory Concentration (MIC) of Streptococcus agalactiae (n = 51), Streptococcus dysgalactiae (n = 54), Streptococcus uberis (n = 50), Staphylococcus aureus (n = 85), non-aureus staphylococci (n = 88), Escherichia coli (n = 54) and Klebsiella species (n = 52). Streptococci and staphylococci were tested against cefquinome, cefoperazone, cephapirin, penicillin, oxacillin, cloxacillin, amoxicillin/clavulanic acid and cefalexin/kanamycin. Besides cefquinome and amoxicillin/clavulanic acid, Gram-negative pathogens were examined for their susceptibility to marbofloxacin and sulfamethoxazole/trimethoprim. The examined S. dysgalactiae isolates exhibited the comparatively lowest MICs. S. uberis and S. agalactiae were inhibited at higher amoxicillin/clavulanic acid and cephapirin concentration levels, whereas S. uberis isolates additionally exhibited elevated cefquinome MICs. Most Gram-positive mastitis pathogens were inhibited at higher cloxacillin than oxacillin concentrations. The MICs of Gram-negative pathogens were higher than previously reported, whereby 7.4%, 5.6% and 11.1% of E. coli isolates had MICs above the highest concentrations tested for cefquinome, marbofloxacin and sulfamethoxazole/trimethoprim, respectively. Individual isolates showed MICs at comparatively higher concentrations, leading to the hypothesis that a certain amount of mastitis pathogens on German dairy farms might be resistant to frequently used antimicrobials.
The aim of the current study was to investigate the effects of the prepartum external treatment of teats with a combination of four lactic acid bacteria strains viz. Lactobacillus (Lb.) rhamnosus ATCC 7469, Lactococcus lactis subsp. lactis ATCC 11454, Lb. paracasei 78/37 (DSM 26911), and Lb. plantarum 118/37 (DSM 26912) on the postcalving udder health of dairy heifers. The study used a split-udder design. Two weeks before the expected calving date, one of two contralateral teats of a teat pair was dipped with an aqueous suspension of lactic acid bacteria (final bacterial counts 8.40–8.47 log10-transformed CFU/mL) once in a week until calving; the other teat of the pair was not treated. After calving, quarter foremilk samples were taken and investigated cyto-microbiologically. In total, 629 teat pairs of 319 heifers were included. There was an association between the treatment and intramammary infections caused by the major udder-pathogenic bacteria Staphylococcus aureus, Streptococcus dysgalactiae, and enterococci, as well as clinical mastitis in the first 100 days after calving. The present study indicates that intramammary infections with major pathogens and clinical mastitis may be prevented by regular prepartum external application of lactic acid bacteria in dairy heifers.
The antimicrobial activity of a phagemixture and a lactic acid bacteriumagainst Staphylococcus aureus isolates from bovine origin was investigated in vitro with regard to possible applications in the therapy of udder inflammation (mastitis) caused by bacterial infections. The S. aureus isolates used for inoculation derived from quarter foremilk samples of mastitis cases. For the examination of the antimicrobial activity, the reduction of the S. aureus germ density was determined [log10 cfu/mL]. The phage mixture consisted of the three obligatory lytic and S. aureus-specific phages STA1.ST29, EB1.ST11 and EB1.ST27 (1:1:1). The selected Lactobacillus plantarum strain with proven antimicrobial properties and the phage mixture were tested against S. aureus in milk, both alone and in combination. The application of the lactic acid bacterium showed only a low reduction ability for a 24 h incubation period. The bacteriophage mixture as well as its combination with the lactic acid bacterium showed high antimicrobial activity against S. aureus for a 24 h incubation period at 37 C, with only the phage mixture showing significance.