Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Administrative data (1)
- Attribution (1)
- COPD (1)
- Case finding (1)
- Causal inference (1)
- Chronic obstructive pulmonary disease (1)
- Claims data (1)
- Comparative effectiveness (1)
- Electronic health records (1)
- Epidemiologie (1)
Mit dem vorliegenden Band kann bereits der Vierte zum Thema Nachrichtendienstpsychologie herausgegeben werden. Nach Kenntnis der Herausgeber stoßen die Aufsatzsammlungen zu unterschiedlichen psychologischen Themen, die im Rahmen der nachrichtendienstlichen Arbeit von Interesse sind, auch außerhalb der Nachrichtendienste auf Interesse. Dies dürfte zum Teil darauf zurückzuführen sein, dass einige Themen inhaltliche Überschneidungen zu der Aufgabenstellung anderer Sicherheitsbehörden, wie z.B. der Polizeibehörden aufweisen. Aber auch innerhalb der Nachrichtendienste ergibt sich verstärkt die Notwendigkeit, bei der Lösung von Fragestellungen psychologische Erkenntnisse zu nutzen bzw. – auf dem speziellen Gebiet der Nachrichtendienstpsychologie – selbst zu generieren. Die Nachrichtendienste sind Bestandteil einer rechtsstaatlichen Struktur, die Gefahren für die Öffentlichkeit erkennen sollen. Dass auch Nachrichtendienste sich nicht vom wissenschaftlichen Fortschritt abkoppeln können, wenn sie dieser Aufgabe nachkommen wollen, ist evident. Wenn beispielsweise Gefahren für die öffentliche Sicherheit von Personen ausgehen, die sich ihrerseits psychologischer Mittel bedienen, müssen Sicherheitsbehörden klären, wie diese psychologischen Mittel eingesetzt werden und welche Wirkung sie entfalten, um ggf. Gegenstrategien vorzuschlagen. Aber auch ihr eigenes Instrumentarium müssen Nachrichtendienste ständig verbessern. Zentral dafür ist die Schulung der Mitarbeiterinnen und Mitarbeiter. Hierzu beizutragen ist eine Funktion der Reihe Nachrichtendienstpsychologie.
Background
Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality worldwide. Estimation of incidence, prevalence and disease burden through routine insurance data is challenging because of under-diagnosis and under-treatment, particularly for early stage disease in health care systems where outpatient International Classification of Diseases (ICD) diagnoses are not collected. This poses the question of which criteria are commonly applied to identify COPD patients in claims datasets in the absence of ICD diagnoses, and which information can be used as a substitute. The aim of this systematic review is to summarize previously reported methodological approaches for the identification of COPD patients through routine data and to compile potential criteria for the identification of COPD patients if ICD codes are not available.
Methods
A systematic literature review was performed in Medline via PubMed and Google Scholar from January 2000 through October 2018, followed by a manual review of the included studies by at least two independent raters. Study characteristics and all identifying criteria used in the studies were systematically extracted from the publications, categorized, and compiled in evidence tables.
Results
In total, the systematic search yielded 151 publications. After title and abstract screening, 38 publications were included into the systematic assessment. In these studies, the most frequently used (22/38) criteria set to identify COPD patients included ICD codes, hospitalization, and ambulatory visits. Only four out of 38 studies used methods other than ICD coding. In a significant proportion of studies, the age range of the target population (33/38) and hospitalization (30/38) were provided. Ambulatory data were included in 24, physician claims in 22, and pharmaceutical data in 18 studies. Only five studies used spirometry, two used surgery and one used oxygen therapy.
Conclusions
A variety of different criteria is used for the identification of COPD from routine data. The most promising criteria set in data environments where ambulatory diagnosis codes are lacking is the consideration of additional illness-related information with special attention to pharmacotherapy data. Further health services research should focus on the application of more systematic internal and/or external validation approaches.
Background and Objectives:
Drawing causal conclusions from real-world data (RWD) poses methodological challenges and risk of bias. We aimed to systematically assess the type and impact of potential biases that may occur when analyzing RWD using the case of progressive ovarian cancer.
Methods:
We retrospectively compared overall survival with and without second-line chemotherapy (LOT2) using electronic medical records. Potential biases were determined using directed acyclic graphs. We followed a stepwise analytic approach ranging from crude analysis and multivariable-adjusted Cox model up to a full causal analysis using a marginal structural Cox model with replicates emulating a reference randomized controlled trial (RCT). To assess biases, we compared effect estimates (hazard ratios [HRs]) of each approach to the
HR of the reference trial.
Results:
The reference trial showed an HR for second line vs. delayed therapy of 1.01 (95% confidence interval [95% CI]: 0.82e1.25). The corresponding HRs from the RWD analysis ranged from 0.51 for simple baseline adjustments to 1.41 (95% CI: 1.22e1.64) accounting for immortal time bias with time-varying covariates. Causal trial emulation yielded an HR of 1.12 (95% CI: 0.96e1.28).
Conclusion:
Our study, using ovarian cancer as an example, shows the importance of a thorough causal design and analysis if one is expecting RWD to emulate clinical trial results.