Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Computersicherheit (3)
- Eindringerkennung (2)
- Anomalieerkennung (1)
- Anomaly Detection (1)
- Benutzeroberfläche (1)
- Data Cubes (1)
- Datenwürfel (1)
- IDS (1)
- Iceberg Condition (1)
- Information Visualization (1)
Institute
Dramatic increases in the number of cyber security attacks and breaches toward businesses and organizations have been experienced in recent years. The negative impacts of these breaches not only cause the stealing and compromising of sensitive information, malfunctioning of network devices, disruption of everyday operations, financial damage to the attacked business or organization itself, but also may navigate to peer businesses/organizations in the same industry. Therefore, prevention and early detection of these attacks play a significant role in the continuity of operations in IT-dependent organizations. At the same time detection of various types of attacks has become extremely difficult as attacks get more sophisticated, distributed and enabled by Artificial Intelligence (AI). Detection and handling of these attacks require sophisticated intrusion detection systems which run on powerful hardware and are administered by highly experienced security staff. Yet, these resources are costly to employ, especially for small and medium-sized enterprises (SMEs). To address these issues, we developed an architecture -within the GLACIER project- that can be realized as an in-house operated Security Information Event Management (SIEM) system for SMEs. It is affordable for SMEs as it is solely based on free and open-source components and thus does not require any licensing fees. Moreover, it is a Self-Contained System (SCS) and does not require too much management effort. It requires short configuration and learning phases after which it can be self-contained as long as the monitored infrastructure is stable (apart from a reaction to the generated alerts which may be outsourced to a service provider in SMEs, if necessary). Another main benefit of this system is to supply data to advanced detection algorithms, such as multidimensional analysis algorithms, in addition to traditional SIEMspecific tasks like data collection, normalization, enrichment, and storage. It supports the application of novel methods to detect security-related anomalies. The most distinct feature of this system that differentiates it from similar solutions in the market is its user feedback capability. Detected anomalies are displayed in a Graphical User Interface (GUI) to the security staff who are allowed to give feedback for anomalies. Subsequently, this feedback is utilized to fine-tune the anomaly detection algorithm. In addition, this GUI also provides access to network actors for quick incident responses. The system in general is suitable for both Information Technology (IT) and Operational Technology (OT) environments, while the detection algorithm must be specifically trained for each of these environments individually.
For anomaly-based intrusion detection in computer networks, data cubes can be used for building a model of the normal behavior of each cell. During inference an anomaly score is calculated based on the deviation of cell metrics from the corresponding normality model. A visualization approach is shown that combines different types of diagrams and charts with linked user interaction for filtering of data.
Although machine learning (ML) for intrusion detection is attracting research, its deployment in practice has proven difficult. Major hindrances are that training a classifier requires training data with attack samples, and that trained models are bound to a specific network.
To overcome these problems, we propose two new methods for anomaly-based intrusion detection. Both are trained on normal-only data, making deployment much easier. The first approach is based on One-class SVMs, while the second leverages our novel Cellwise Estimator algorithm, which is based on multidimensional OLAP cubes. The latter has the additional benefit of explainable output, in contrast to many ML methods like neural networks. The created models capture the normal behavior of a network and are used to find anomalies that point to attacks. We present a thorough evaluation using benchmark data and a comparison to related approaches showing that our approach is competitive.