Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Cyber-Versicherung (2)
- 18F-FDG PET CT (1)
- Bankruptcy costs (1)
- Bildgebendes Verfahren (1)
- Cetuximab (1)
- Colorectal cancer (1)
- Computersicherheit (1)
- Cross-holdings (1)
- Cyber Insurance (1)
- Cyber Risks (1)
The paper presents a comprehensive model of a banking system that integrates network effects, bankruptcy costs, fire sales, and cross-holdings. For the integrated financial market we prove the existence of a price-payment equilibrium and design an algorithm for the computation of the greatest and the least equilibrium. The number of defaults corresponding to the greatest price-payment equilibrium is analyzed in several comparative case studies. These illustrate the individual and joint impact of interbank liabilities, bankruptcy costs, fire sales and cross-holdings on systemic risk. We study policy implications and regulatory instruments, including central bank guarantees and quantitative easing, the significance of last wills of financial institutions, and capital requirements.
The paper provides a comprehensive overview of modeling and pricing cyber insurance and includes clear and easily understandable explanations of the underlying mathematical concepts. We distinguish three main types of cyber risks: idiosyncratic, systematic, and systemic cyber risks. While for idiosyncratic and systematic cyber risks, classical actuarial and financial mathematics appear to be well-suited, systemic cyber risks require more sophisticated approaches that capture both network and strategic interactions. In the context of pricing cyber insurance policies, issues of interdependence arise for both systematic and systemic cyber risks; classical actuarial valuation needs to be extended to include more complex methods, such as concepts of risk-neutral valuation and (set-valued) monetary risk measures.
Background: The epidermal growth factor receptor monoclonal antibody cetuximab has proven activity in metastatic colorectal cancer. To date, the mechanisms of action are not completely understood. Especially the impact on tumor glucose metabolism, or tumor vascularization remains largely unclear. The understanding of mechanisms such as early changes in tumor metabolism is of clinical importance since there may be a substantial influence on choice and sequence of drug combinations. Early signals of response to cetuximab may prove useful to identify patients having a relevant clinical treatment benefit. The objective of this trial is to evaluate the predictive relevance of the relative change in 18 F-Fluorodeoxyglucose tumor uptake for early clinical response during short-term single agent treatment with cetuximab. Early clinical response will be routinely measured according to the response evaluation criteria in solid tumors. Accompanying research includes cytokine immune monitoring and analysis of tumor proteins and tumor genes.
Methods/Design: The REMOTUX trial is an investigator-initiated, prospective, open-label, single-arm, single-center early exploratory predictive study. The first 18 F-FDG PET-CT is conducted at baseline followed by the run-in phase with cetuximab at days 1 and 8. At day 14, the second 18 F-FDG PET-CT is performed. Subsequently, patients are treated according to the Folfiri-cetuximab regimen as an active and approved first-line regimen for metastatic colorectal carcinoma. At day 56, clinical response is evaluated with a CT-scan compared to the baseline analysis. Tracer uptake is assessed using standardized uptake values (SUVs). The main hypothesis to be tested in the primary analysis is whether or not the relative change in the SUV from baseline to day 14 has any predictive relevance for early clinical response determined at day 56. Patients are followed until death from any cause or until 24 months after the last patient has ended trial treatment.
Discussion: The aim of this trial is to evaluate metabolic changes in metastatic colorectal cancer during short-term single agent treatment with cetuximab and to analyse their potential of predicting early clinical response. This could be helpful to answer the question if early identification of patients not responding to cetuximab is possible.
Based on classical contagion models we introduce an artificial cyber lab: the digital twin of a complex cyber system in which possible cyber resilience measures may be implemented and tested. Using the lab, in numerical case studies, we identify two classes of measures to control systemic cyber risks: security‐ and topology‐based interventions. We discuss the implications of our findings on selected real‐world cybersecurity measures currently applied in the insurance and regulation practice or under discussion for future cyberrisk control. To this end, we provide a brief overview of the current cybersecurity regulation and emphasize the role of insurance companies as private regulators. Moreover, from an insurance point of view, we provide first attempts to design systemic cyber risk obligations and to measure the systemic risk contribution of individual policyholders.