Refine
Document Type
- Conference Proceeding (2)
- Article (1)
- Book (1)
Language
- English (3)
- Multiple languages (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Direct Energy Deposition (2)
- Functionally Graded Materials (2)
- Funktioneller Gradientenwerkstoff (2)
- AI (1)
- Additive Manufacturing (1)
- Automation (1)
- Automation technology (1)
- Beleuchtung (1)
- Bewegungsmuster (1)
- Big Data (1)
Coaxial Laser wire Direct Energy Deposition (L-DED) promises a direction-independent buildup due to a centric supply of the welding material. To fabricate Functionally Graded Materials (FGMs), a processing head was designed that is capable of supplying two wire materials into the processing zone. This study investigates the direction dependency of welding seams produced by two 1.4718 metal wires with a diameter of 0.8 mm in a coaxial laser setup using three separately controllable single laser beams with a maximum combined laser power of 660 W. The welding wires are supplied simultaneously to the laser spot under an incidence angle of 3.5° to the middle axis of the processing head. The seam geometry is investigated using a confocal laserscanning-microscope. A comparison of the height, width and macroscopic seam geometry reveals the influence of the welding direction on the seam geometry and quality in Laser Double wire Direct Energy Deposition (LD-DED).
Das Institut für Sensorik und Automation (ISA) stellt in acht Beiträgen aktuelle Ergebnisse aus seinen vielfältigen Forschungsprojekten vor. Es werden Themen angesprochen wie Lichttechnik in der Nutzgeflügelhaltung, Datenaustausch in der Produktion, hochfrequente Front-Ends für Umweltsensoren in der Gebäudeautomatisierung, Mössbauer-Spektroskopie, Entwicklung fortschrittlicher Transimpedanzverstärker, Optimierung monostatischer Transceiver, Datenverarbeitungsszenarien für Smart-Home-Systeme und Designüberlegungen für kryogene Analog-Digital-Wandler.
This paper introduces a method for analysing motion patterns that can be utilised to optimise data-driven systems. The aim is to use surveillance cameras and artificial intelligence to track multiple objects in a reliable manner, thereby preserving the authenticity of movement patterns for numerous and similar objects. In a case study, this method is applied to optimize lighting conditions in animal husbandry. Furthermore, this approach can be utilized not only in animal husbandry but also in other domains.