Refine
Document Type
- Article (3)
- Conference Proceeding (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Empfehlungssystem (2)
- Ad-hoc-Netz (1)
- Context-aware recommender systems (1)
- Eingebettetes System (1)
- Explainability (1)
- Graph embeddings (1)
- Knowledge graphs (1)
- Location-based systems (1)
- MANET (1)
- Music recommender (1)
Institute
In this paper, we consider the route coordination problem in emergency evacuation of large smart buildings. The building evacuation time is crucial in saving lives in emergency situations caused by imminent natural or man-made threats and disasters. Conventional approaches to evacuation route coordination are static and predefined. They rely on evacuation plans present only at a limited number of building locations and possibly a trained evacuation personnel to resolve unexpected contingencies. Smart buildings today are equipped with sensory infrastructure that can be used for an autonomous situation-aware evacuation guidance optimized in real time. A system providing such a guidance can help in avoiding additional evacuation casualties due to the flaws of the conventional evacuation approaches. Such a system should be robust and scalable to dynamically adapt to the number of evacuees and the size and safety conditions of a building. In this respect, we propose a distributed route recommender architecture for situation-aware evacuation guidance in smart buildings and describe its key modules in detail. We give an example of its functioning dynamics on a use case.
Smart Cities require reliable means for managing installations that offer essential services to the citizens. In this paper we focus on the problem of evacuation of smart buildings in case of emergencies. In particular, we present an abstract architecture for situation-aware evacuation guidance systems in smart buildings, describe its key modules in detail, and provide some concrete examples of its structure and dynamics.
Nowadays, most recommender systems are based on a centralized architecture, which can cause crucial issues in terms of trust, privacy, dependability, and costs. In this paper, we propose a decentralized and distributed MANET-based (Mobile Ad-hoc NETwork) recommender system for open facilities. The system is based on mobile devices that collect sensor data about users locations to derive implicit ratings that are used for collaborative filtering recommendations. The mechanisms of deriving ratings and propagating them in a MANET network are discussed in detail. Finally, extensive experiments demonstrate the suitability of the approach in terms of different performance metrics.
Music streaming platforms offer music listeners an overwhelming choice of music. Therefore, users of streaming platforms need the support of music recommendation systems to find music that suits their personal taste. Currently, a new class of recommender systems based on knowledge graph embeddings promises to improve the quality of recommendations, in particular to provide diverse and novel recommendations. This paper investigates how knowledge graph embeddings can improve music recommendations. First, it is shown how a collaborative knowledge graph can be derived from open music data sources. Based on this knowledge graph, the music recommender system EARS (knowledge graph Embedding-based Artist Recommender System) is presented in detail, with particular emphasis on recommendation diversity and explainability. Finally, a comprehensive evaluation with real-world data is conducted, comparing of different embeddings and investigating the influence of different types of knowledge.