Refine
Document Type
- Article (7)
- Conference Proceeding (3)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Elektrospinnen (5)
- Polyacrylnitril (3)
- Molecular switches (2)
- Mössbauer (2)
- Mößbauer-Spektroskopie (2)
- Nanofaser (2)
- Spin Crossover (2)
- Triazole (2)
- Verbundwerkstoff (2)
- composites (2)
Material tests were performed on a rediscovered Klimt-artwork “Trompetender Putto”. We performed studies on the red colored spots, mainly taken from non-restored parts. MIMOS II Fe-57 Mössbauer spectroscopy (novelty in art-pigment analysis) mainly reveals haematite and crystallized goethite in red colors. Electron microscopy can identify various layers of the original and overpainting of an artwork. The number of layers fluctuates between three and four chemically painted areas. The portable X-ray fluorescence analysis enables to reduce the pigment list to containing mercury (cinnabar), lead, zinc, iron and titanium. Infrared-lightirradiation visualizes the different age of the pigments.
Improving the graphitic structure in carbon nanofibers (CNFs) is important for exploiting their potential in mechanical, electrical and electrochemical applications. Typically, the synthesis of carbon fibers with a highly graphitized structure demands a high temperature of almost 2500 °C. Furthermore, to achieve an improved graphitic structure, the stabilization of a precursor fiber has to be assisted by the presence of tension in order to enhance the molecular orientation. Keeping this in view, herein we report on the fabrication of graphene nanoplatelets (GNPs) doped carbon nanofibers using electrospinning followed by oxidative stabilization and carbonization. The effect of doping GNPs on the graphitic structure was investigated by carbonizing them at various temperatures (1000 °C, 1200 °C, 1500 °C and 1700 °C). Additionally, a stabilization was achieved with and without constant creep stress (only shrinkage stress) for both pristine and doped precursor nanofibers, which were eventually carbonized at 1700 °C. Our findings reveal that the GNPs doping results in improving the graphitic structure of polyacrylonitrile (PAN). Further, in addition to the templating effect during the nucleation and growth of graphitic crystals, the GNPs encapsulated in the PAN nanofiber matrix act in-situ as micro clamp units performing the anchoring function by preventing the loss of molecular orientation during the stabilization stage, when no external tension is applied to nanofiber mats. The templating effect of the entire graphitization process is reflected by an increased electrical conductivity along the fibers. Simultaneously, the electrical anisotropy is reduced, i.e., the GNPs provide effective pathways with improved conductivity acting like bridges between the nanofibers resulting in an improved conductivity across the fiber direction compared to the pristine PAN system.
The properties of these carbon nanostructures are determined by the structure and orientation of the graphitic domains during pyrolysis of carbon precursors. In this work, we investigated systematically the impact of creep stress during the stabilization process on the cyclization and molecular orientation of polyacrylonitrile as well as the graphitized structure after high temperature carbonization. Therefore, polyacrylonitrile (PAN) is electrospun and then stabilized with and without application of creep stress at different temperatures. The effect of creep stress on cyclization was monitored via Fourier transform IR spectroscopy (FTIR) and it was found that the degree of cyclization varies with the application of creep stress during the initial stages of cyclization at low temperatures (190°C and 210°C) in contrast to cyclization done at higher temperature (230°C). Herman molecular orientation factor was evaluated by polarized FTIR for PAN nanofibers cyclized with and without creep stress at 230°C-10 h. Subsequently, carbonization was performed at 1000°C and 1200°C for nanofibers cyclized at 230°C-10 h. Our results from XRD and Raman spectroscopy shows that the degree of graphitization and ordering of graphitic domains was enhanced for PAN nanofibers that were creep stressed during the cyclization process, even though both PAN nanofibers cyclized with creep stress and without creep stress showed the same amount of cyclized material. This increased degree of graphitization can be tracked to application of creep stress during the stabilization process which obviously favors the formation of sp2-hybridized carbon planes in the carbonization process. This finding highlights the impact of mechanical stress linking the cyclization of PAN nanofibers to graphitization.
Our results will pave the way for a deeper understanding of mechano-chemical processes to fabricate well-aligned graphitic domains which improves the mechanical and electrical properties of CNFs.
Electrospinning with consequent thermal treatment consists in a carbon fiber production method that spins a polymer solution to create fibers with diameters around a few hundred nanometers. The thermal treatments are used for the cyclization and then carbonization of the material at 1700 °C for one hour. The unique structure of micro- and nano-carbon fibers makes them a promising material for various applications ranging from future battery designs to filtration. This work investigated the possibility of using milled gasification biochar, derived from a 20 kW fixed-bed gasifier fueled with vine pruning pellets, as an addictive in the preparation of electrospinning solutions. This study outlined that solvent cleaning and the consequent wet-milling and 32 µm sifting are fundamental passages for biochar preparation. Four different polyacrylonitrile-biochar shares were tested ranging from pure polymer to 50–50% solutions. The resulting fibers were analyzed via scanning electron microscopy, and energy-dispersive X-ray and infrared spectroscopy. Results from the morphological analysis showed that biochar grains dispersed themselves well among the fiber mat in all the proposed shares. All the tested solutions, once carbonized, exceeded 97%wt. of carbon content. At higher carbonization temperatures, the inorganic compounds naturally showing in biochar such as potassium and calcium disappeared, resulting in an almost carbon-pure fiber matrix with biochar grains in between.
Electrospun polymer fiber mats feature versatile applications in tissue engineering, drug delivery, water treatment and chemical processes. The orientation of fibers within these mats is a crucial factor that significantly influences their properties and performance. However, the analysis of fiber samples using scanning electron microscopy (SEM) has limitations such as time consumption, fixed assembly, and restricted field of vision. Therefore, a fast and reliable method for qualitative measurements of fiber orientation is required. Mueller matrix polarimetry, a well-established method for measuring orientation of chemical and biological species, was employed in this case. We investigated the effect of four important parameters of the electrospinning process, namely collector speed, applied voltage, needle-to-collector distance, and solution concentration, on fiber orientation using Mueller matrix polarimetry thus extending the range of parameters analyzed. Measurements were performed using two extreme values and a central optimized value for each fabrication parameter. Changes in matrix values were observed for each fabrication parameter, and their correlation with fiber orientation was analyzed based on the Lu-Chipman decomposition. The results were compared with SEM images, which served as the ground truth, and showed overall good agreement. In the future, the analysis of electrospun polymer fibers can be done by using Mueller matrix polarimetry as alternative to current technology and fabrication parameters, including solution concentration for the first time in this context and the production can quickly be adjusted based on the outcome of the measurements
Pressing of Functionalized Polymer Composite Materials to Improve Mössbauer Measurement Signals
(2024)
Coordination compounds, like iron(II) triazole complexes, exhibit spin crossover (SCO) behavior at around room temperature. Therefore, they are interesting for a variety of possible applications, and it is convenient to integrate them into polymers. Due to a reduction of the iron content and thus also 57Fe content in the sample through integration in polymers, Mössbauer measurements are only possible with greater difficulty or very long measurement times without expensive enrichment of the samples with 57Fe. So, other ways of improving the Mössbauer signal for these composite materials are necessary. Therefore, we pressed these composite materials to improve the Mössbauer spectra. In this study, we synthesized an iron(II) triazole spin crossover complex and an electrospun polymer complex composite nanofiber material including the same complex. For both products, Mössbauer measurements were performed at room temperature before and after using a press to show that the complex composite is not harmed through pressing. We investigate the influence of the pressing impact on the Mössbauer measurements in the context of measurement statistics and the measured signals. We show that pressing is not connected to any changes in the sample regarding the spin and oxidation state. We present that pressing improves the statistics of the Mössbauer measurements significantly. Furthermore, we use SEM measurements and PXRD to investigate whether or not the obtained fiber mats are destroyed in the pressing process.
Incorporation and Deposition of Spin Crossover Materials into and onto Electrospun Nanofibers
(2023)
We synthesized iron(II)-triazole spin crossover compounds of the type [Fe(atrz)3]X2 and incorporated and deposited them on electrospun polymer nanofibers. For this, we used two separate electrospinning methods with the goal of obtaining polymer complex composites with intact switching properties. In view of possible applications, we chose iron(II)-triazole-complexes that are known to exhibit spin crossover close to ambient temperature. Therefore, we used the complexes [Fe(atrz)3]Cl2 and [Fe(atrz)3](2ns)2 (2ns = 2-Naphthalenesulfonate) and deposited those on fibers of polymethylmethacrylate (PMMA) and incorporated them into core–shell-like PMMA fiber structures. These core–shell structures showed to be inert to outer environmental influences, such as droplets of water, which we purposely cast on the fiber structure, and it did not rinse away the used complex. We analyzed both the complexes and the composites with IR-, UV/Vis, Mössbauer spectroscopy, SQUID magnetometry, as well as SEM and EDX imaging. The analysis via UV/Vis spectroscopy, Mössbauer spectroscopy, and temperature-dependent magnetic measurements with the SQUID magnetometer showed that the spin crossover properties were maintained and were not changed after the electrospinning processes.
The miniaturized Mössbauer-spectrometer (MIMOS II), originally devised by Göstar Klingelhöfer, is further developed by the Renz group at the Leibniz University Hanover in cooperation with the Hanover University of Applied Sciences and Arts. A new processing unit with a two-dimensional (2D) data acquisition was developed by M. Jahns. The advantage of this data acquisition is that no thresholds need to be set before the measurement. The energy of each photon is determined and stored with the velocity of the drive. After the measurement, the relevant area can be selected for the Mössbauer spectrum. Now we have expanded the evaluation unit with a power supply for a MIMOS drive and a MIMOS PIN detector. So we have a very compact MIMOS transmissions measurement setup. With this setup it is possible to process the signals of two detectors serially. Currently we are working on a parallel signal processing.
Compounds that exhibit the spin crossover effect are known to show a change of spin states through external stimuli. This reversible switching of spin states is accompanied by a change of the properties of the compound. Complexes, like iron (II)-triazole complexes, that exhibit this behavior at ambient temperature are often discussed for potential applications. In previous studies we synthesized iron (II)-triazole complexes and implemented them into electrospun nanofibers. We used Mössbauer spectroscopy in first studies to prove a successful implementation with maintaining spin crossover properties. Further studies from us showed that it is possible to use different electrospinning methods to either do a implementation or a deposition of the synthesized solid SCO material into or onto the polymer nanofibers. We now used a solvent in which both, the used iron (II)-triazole complex [Fe(atrz)3](2 ns)2 and three different polymers (Polyacrylonitrile, Polymethylmethacrylate and Polyvinylpyrrolidone), are soluble. This shall lead to a higher homogeneous distribution of the complex along the nanofibers. Mössbauer spectroscopy and other measurements are therefore in use to show a successful implementation without any significant changes to the complex.
Complexes like iron (II)-triazoles exhibit spin crossover behavior at ambient temperature and are often considered for possible application. In previous studies, we implemented complexes of this type into polymer nanofibers and first polymer-based optical waveguide sensor systems. In our current study, we synthesized complexes of this type, implemented them into polymers and obtained composites through drop casting and doctor blading. We present that a certain combination of polymer and complex can lead to composites with high potential for optical devices. For this purpose, we used two different complexes [Fe(atrz)3](2 ns)2 and [Fe(atrz)3]Cl1.5(BF4)0.5 with different polymers for each composite. We show through transmission measurements and UV/VIS spectroscopy that the optical properties of these composite materials can reversibly change due to the spin crossover effect.