Refine
Document Type
- Article (8)
- Conference Proceeding (3)
- Part of a Book (1)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- openEHR (3)
- Acute stroke care (1)
- Ambulatory Monitoring (1)
- Angst (1)
- App <Programm> (1)
- COVID-19 (1)
- Data Model (1)
- Data-Warehouse-Konzept (1)
- Datenmodell (1)
- Decision Support (1)
Background:
Many patients with cardiovascular disease also show a high comorbidity of mental disorders, especially such as anxiety and depression. This is, in turn, associated with a decrease in the quality of life. Psychocardiological treatment options are currently limited. Hence, there is a need for novel and accessible psychological help. Recently, we demonstrated that a brief face-to-face metacognitive therapy (MCT) based intervention is promising in treating anxiety and depression. Here, we aim to translate the face-to-face approach into digital application and explore the feasibility of this approach.
Methods:
We translated a validated brief psychocardiological intervention into a novel non-blended web app. The data of 18 patients suffering from various cardiac conditions but without diagnosed mental illness were analyzed after using the web app over a two-week period in a feasibility trial. The aim was whether a nonblended web app based MCT approach is feasible in the group of cardiovascular patients with cardiovascular disease.
Results:
Overall, patients were able to use the web app and rated it as satisfactory and beneficial. In addition, there was first indication that using the app improved the cardiac patients’ subjectively perceived health and reduced their anxiety. Therefore, the approach seems feasible for a future randomized controlled trial.
Conclusion:
Applying a metacognitive-based brief intervention via a nonblended web app seems to show good acceptance and feasibility in a small target group of patients with CVD. Future studies should further develop, improve and validate digital psychotherapy approaches, especially in patient groups with a lack of access to standard psychotherapeutic care.
Clinical scores and motion-capturing gait analysis are today’s gold standard for outcome measurement after knee arthroplasty, although they are criticized for bias and their ability to reflect patients’ actual quality of life has been questioned. In this context, mobile gait analysis systems have been introduced to overcome some of these limitations. This study used a previously developed mobile gait analysis system comprising three inertial sensor units to evaluate daily activities and sports. The sensors were taped to the lumbosacral junction and the thigh and shank of the affected limb. The annotated raw data was evaluated using our validated proprietary software. Six patients undergoing knee arthroplasty were examined the day before and 12 months after surgery. All patients reported a satisfactory outcome, although four patients still had limitations in their desired activities. In this context, feasible running speed demonstrated a good correlation with reported impairments in sports-related activities. Notably, knee flexion angle while descending stairs and the ability to stop abruptly when running exhibited good correlation with the clinical stability and proprioception of the knee. Moreover, fatigue effects were displayed in some patients. The introduced system appears to be suitable for outcome measurement after knee arthroplasty and has the potential to overcome some of the limitations of stationary gait labs while gathering additional meaningful parameters regarding the force limits of the knee.
Background: Fall events contribute significantly to mortality, morbidity and costs in our ageing population. In order to identify persons at risk and to target preventive measures, many scores and assessment tools have been developed. These often require expertise and are costly to implement. Recent research investigates the use of wearable inertial sensors to provide objective data on motion features which can be used to assess individual fall risk automatically. So far it is unknown how well this new method performs in comparison with conventional fall risk assessment tools. The aim of our research is to compare the predictive performance of our new sensor-based method with conventional and established methods, based on prospective data.
Methods: In a first study phase, 119 inpatients of a geriatric clinic took part in motion measurements using a wireless triaxial accelerometer during a Timed Up&Go (TUG) test and a 20 m walk. Furthermore, the St. Thomas Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) was performed, and the multidisciplinary geriatric care team estimated the patients’ fall risk. In a second follow-up phase of the study, 46 of the participants were interviewed after one year, including a fall and activity assessment. The predictive performances of the TUG, the STRATIFY and team scores are compared. Furthermore, two automatically induced logistic regression models based on conventional clinical and assessment data (CONV) as well as sensor data (SENSOR) are matched.
Results: Among the risk assessment scores, the geriatric team score (sensitivity 56%, specificity 80%) outperforms STRATIFY and TUG. The induced logistic regression models CONV and SENSOR achieve similar performance values (sensitivity 68%/58%, specificity 74%/78%, AUC 0.74/0.72, +LR 2.64/2.61). Both models are able to identify more persons at risk than the simple scores.
Conclusions: Sensor-based objective measurements of motion parameters in geriatric patients can be used to assess individual fall risk, and our prediction model’s performance matches that of a model based on conventional clinical and assessment data. Sensor-based measurements using a small wearable device may contribute significant information to conventional methods and are feasible in an unsupervised setting. More prospective research is needed to assess the cost-benefit relation of our approach.
Wearable sensors in healthcare and sensor-enhanced health information systems: all our tomorrows?
(2012)
Wearable sensor systems which allow for remote or self-monitoring of health-related parameters are regarded as one means to alleviate the consequences of demographic change. This paper aims to summarize current research in wearable sensors as well as in sensor-enhanced health information systems. Wearable sensor technologies are already advanced in terms of their technical capabilities and are frequently used for cardio-vascular monitoring. Epidemiologic predictions suggest that neuro-psychiatric diseases will have a growing impact on our health systems and thus should be addressed more intensively. Two current project examples demonstrate the benefit of wearable sensor technologies: long-term, objective measurement under daily-life, unsupervised conditions. Finally, up-to-date approaches for the implementation of sensor-enhanced health information systems are outlined. Wearable sensors are an integral part of future pervasive, ubiquitous and person-centered health
care delivery. Future challenges include their integration into sensor-enhanced health information systems and sound evaluation studies involving measures of workload reduction and costs.
Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups
(2012)
Background: Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients’ assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2).
Methods: A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital’s data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances.
Results: The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity.
Conclusions: Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting.
Complications may occur after a liver transplantation, therefore proper monitoring and care in the post-operation phase plays a very important role. Sometimes, monitoring and care for patients from abroad is difficult due to a variety of reasons, e.g., different care facilities. The objective of our research for this paper is to design, implement and evaluate a home monitoring and decision support infrastructure for international children who underwent liver transplant operation. A point-of-care device and the PedsQL questionnaire were used in patients’ home environment for measuring the blood parameters and assessing quality of life. By using a tablet PC and a specially developed software, the measured results were able to be transmitted to the health care providers via internet. So far, the developed infrastructure has been evaluated with four international patients/families transferring 38 records of blood test. The evaluation showed that the home monitoring and decision support infrastructure is technically feasible and is able to give timely alarm in case of abnormal situation as well as may increase parent’s feeling of safety for their children.
Fall events and their severe consequences represent not only a threatening problem for the affected individual, but also cause a significant burden for health care systems. Our research work aims to elucidate some of the prospects and problems of current sensor-based fall risk assessment approaches. Selected results of a questionnaire-based survey given to experts during topical workshops at international conferences are presented. The majority of domain experts confirmed that fall risk assessment could potentially be valuable for the community and that prediction is deemed possible, though limited. We conclude with a discussion of practical issues concerning adequate outcome parameters for clinical studies and data sharing within the research community. All participants agreed that sensor-based fall risk assessment is a promising and valuable approach, but that more prospective clinical studies with clearly defined outcome measures are necessary.
Using openEHR Archetypes for Automated Extraction of Numerical Information from Clinical Narratives
(2019)
Up to 80% of medical information is documented by unstructured data such as clinical reports written in natural language. Such data is called unstructured because the information it contains cannot be retrieved automatically as straightforward as from structured data. However, we assume that the use of this flexible kind of documentation will remain a substantial part of a patient’s medical record, so that clinical information systems have to deal appropriately with this type of information description. On the other hand, there are efforts to achieve semantic interoperability between clinical application systems through information modelling concepts like HL7 FHIR or openEHR. Considering this, we propose an approach to transform unstructured documented information into openEHR archetypes. Furthermore, we aim to support the field of clinical text mining by recognizing and publishing the connections between openEHR archetypes and heterogeneous phrasings. We have evaluated our method by extracting the values to three openEHR archetypes from unstructured documents in English and German language.
Due to demographic change the number of serious kidney diseases and thus required transplantations will increase. The increased demand for donor organs and a decreasing supply of these organs underline the necessity for effective early rejection diagnostic measures to improve the lifetime of transplants. Expert systems might improve rejection diagnostics but for the development of such systems data models are needed that encompass the relevant information to enable optimal data aggregation and evaluation. Results of a literature review concerning published data models and information systems concerned with kidney transplant rejection diagnostic lead to a set of data elements even if no papers could be identified that publish data models explicitly.
Background: One of the major challenges in pediatric intensive care is the detection of life-threatening health conditions under acute time constraints and performance pressure. This includes the assessment of pediatric organ dysfunction (OD) that demands extraordinary clinical expertise and the clinician’s ability to derive a decision based on multiple information and data sources. Clinical decision support systems (CDSS) offer a solution to support medical staff in stressful routine work. Simultaneously, detection of OD by using computerized decision support approaches has been scarcely investigated, especially not in pediatrics.
Objectives: The aim of the study is to enhance an existing, interoperable, and rulebased CDSS prototype for tracing the progression of sepsis in critically ill children by augmenting it with the capability to detect SIRS/sepsis-associated hematologic OD, and to determine its diagnostic accuracy.
Methods: We reproduced an interoperable CDSS approach previously introduced by our working group: (1) a knowledge model was designed by following the commonKADS methodology, (2) routine care data was semantically standardized and harmonized using openEHR as clinical information standard, (3) rules were formulated and implemented in a business rule management system. Data from a prospective diagnostic study, including 168 patients, was used to estimate the diagnostic accuracy of the rule-based CDSS using the clinicians’ diagnoses as reference