Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Dickdarmkrebs (11)
- colorectal cancer (5)
- Krebsrisiko (4)
- CRC (2)
- Colorectal cancer (2)
- Folsäure (2)
- GWAS (2)
- Metabolomik (2)
- folic acid (2)
- metabolomics (2)
Institute
Background & Aims: Human studies examining associations between circulating levels of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) and colorectal cancer risk have reported inconsistent results. We conducted complementary serologic and Mendelian randomization (MR) analyses to determine whether alterations in circulating levels of IGF1 or IGFBP3 are associated with colorectal cancer development.
Methods: Serum levels of IGF1 were measured in blood samples collected from 397,380 participants from the UK Biobank, from 2006 through 2010. Incident cancer cases and cancer cases recorded first in death certificates were identified through linkage to national cancer and death registries. Complete follow-up was available through March 31, 2016. For the MR analyses, we identified genetic variants associated with circulating levels of IGF1 and IGFBP3. The association of these genetic variants with colorectal cancer was examined with 2-sample MR methods using genome-wide association study consortia data (52,865 cases with colorectal cancer and 46,287 individuals without [controls])
Results: After a median follow-up period of 7.1 years, 2665 cases of colorectal cancer were recorded. In a multivariable-adjusted model, circulating level of IGF1 associated with colorectal cancer risk (hazard ratio per 1 standard deviation increment of IGF1, 1.11; 95% confidence interval [CI] 1.05–1.17). Similar associations were found by sex, follow-up time, and tumor subsite. In the MR analyses, a 1 standard deviation increment in IGF1 level, predicted based on genetic factors, was associated with a higher risk of colorectal cancer risk (odds ratio 1.08; 95% CI 1.03–1.12; P = 3.3 × 10–4). Level of IGFBP3, predicted based on genetic factors, was associated with colorectal cancer risk (odds ratio per 1 standard deviation increment, 1.12; 95% CI 1.06–1.18; P = 4.2 × 10–5). Colorectal cancer risk was associated with only 1 variant in the IGFBP3 gene region (rs11977526), which also associated with anthropometric traits and circulating level of IGF2.
Conclusions: In an analysis of blood samples from almost 400,000 participants in the UK Biobank, we found an association between circulating level of IGF1 and colorectal cancer. Using genetic data from 52,865 cases with colorectal cancer and 46,287 controls, a higher level of IGF1, determined by genetic factors, was associated with colorectal cancer. Further studies are needed to determine how this signaling pathway might contribute to colorectal carcinogenesis.
Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk
(2024)
Background: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk.
Methods: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated.
Results: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10−8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%–4.0%) vs 6.1% (5.7%–6.5%) (difference 2.4%, P-value = 1.83 × 10−14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%–1.8%) vs 2.2% (1.9%–2.4%) (difference 0.6%, P-value = 1.01 × 10−3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk.
Conclusions: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
Background: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis.
Methods: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test).
Results: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 – ORAA: 1.62, 95% CI: 1.34–1.96; ORAG: 1.41, 95% CI: 1.30–1.54; ORGG: 1.22, 95% CI: 1.13–1.31; p-value3-d.f.: 5.46 × 10−11) and 13q14.13 (rs9526201, LRCH1 – ORGG: 2.11, 95% CI: 1.56–2.83; ORGA: 1.52, 95% CI: 1.38–1.68; ORAA: 1.13, 95% CI: 1.06–1.21; p-value2-d.f.: 7.84 × 10−09).
Discussion: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Colorectal cancer is known to arise from multiple tumorigenic pathways; however, the underlying mechanisms remain not completely understood. Metabolomics is becoming an increasingly popular tool in assessing biological processes. Previous metabolomics research focusing on colorectal cancer is limited by sample size and did not replicate findings in independent study populations to verify robustness of reported findings. Here, we performed a ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) screening on EDTA plasma from 268 colorectal cancer patients and 353 controls using independent discovery and replication sets from two European cohorts (ColoCare Study: n = 180 patients/n = 153 controls; the Colorectal Cancer Study of Austria (CORSA) n = 88 patients/n = 200 controls), aiming to identify circulating plasma metabolites associated with colorectal cancer and to improve knowledge regarding colorectal cancer etiology. Multiple logistic regression models were used to test the association between disease state and metabolic features. Statistically significant associated features in the discovery set were taken forward and tested in the replication set to assure robustness of our findings. All models were adjusted for sex, age, BMI and smoking status and corrected for multiple testing using False Discovery Rate. Demographic and clinical data were abstracted from questionnaires and medical records.
Background: Folates, including folic acid, may play a dual role in colorectal cancer development. Folate is suggested to be protective in early carcinogenesis but could accelerate growth of premalignant lesions or micrometastases. Whether circulating concentrations of folate and folic acid, measured around time of diagnosis, are associated with recurrence and survival in colorectal cancer patients is largely unknown.
Methods: Circulating concentrations of folate, folic acid, and folate catabolites p-aminobenzoylglutamate and p-acetamidobenzoylglutamate were measured by liquid chromatography-tandem mass spectrometry at diagnosis in 2024 stage I-III colorectal cancer patients from European and US patient cohort studies. Multivariable-adjusted Cox proportional hazard models were used to assess associations between folate, folic acid, and folate catabolites concentrations with recurrence, overall survival, and disease-free survival.
Results: No statistically significant associations were observed between folate, p-aminobenzoylglutamate, and p-acetamidobenzoylglutamate concentrations and recurrence, overall survival, and disease-free survival, with hazard ratios ranging from 0.92 to 1.16. The detection of folic acid in the circulation (yes or no) was not associated with any outcome. However, among patients with detectable folic acid concentrations (n = 296), a higher risk of recurrence was observed for each twofold increase in folic acid (hazard ratio = 1.31, 95% confidence interval = 1.02 to 1.58). No statistically significant associations were found between folic acid concentrations and overall and disease-free survival.
Conclusions: Circulating folate and folate catabolite concentrations at colorectal cancer diagnosis were not associated with recurrence and survival. However, caution is warranted for high blood concentrations of folic acid because they may increase the risk of colorectal cancer recurrence.
Colorectal cancer is the second most common cause of cancer-related death globally, with marked differences in prognosis by disease stage at diagnosis. We studied circulating metabolites in relation to disease stage to improve the understanding of metabolic pathways related to colorectal cancer progression. We investigated plasma concentrations of 130 metabolites among 744 Stages I–IV colorectal cancer patients from ongoing cohort studies. Plasma samples, collected at diagnosis, were analyzed with liquid chromatography-mass spectrometry using the Biocrates AbsoluteIDQ™ p180 kit. We assessed associations between metabolite concentrations and stage using multinomial and multivariable logistic regression models. Analyses were adjusted for potential confounders as well as multiple testing using false discovery rate (FDR) correction. Patients presented with 23, 28, 39 and 10% of Stages I–IV disease, respectively. Concentrations of sphingomyelin C26:0 were lower in Stage III patients compared to Stage I patients (pFDR < 0.05). Concentrations of sphingomyelin C18:0 and phosphatidylcholine (diacyl) C32:0 were statistically significantly higher, while citrulline, histidine, phosphatidylcholine (diacyl) C34:4, phosphatidylcholine (acyl-alkyl) C40:1 and lysophosphatidylcholines (acyl) C16:0 and C17:0 concentrations were lower in Stage IV compared to Stage I patients (pFDR < 0.05). Our results suggest that metabolic pathways involving among others citrulline and histidine, implicated previously in colorectal cancer development, may also be linked to colorectal cancer progression.
Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer.
Significance: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
Background: Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations.
Methods: A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1–degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously.
Findings: The 3-DF joint test revealed two significant loci with p-value <5 × 10−8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10−3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10−7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10−8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029).
Interpretation: We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings.
Background: Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate’s role in CRC.
Objectives: Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk.
Methods: We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO).
Results: Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate.
Conclusions: Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.
Folate-mediated one-carbon metabolism (FOCM) is a key pathway essential for nucleotide synthesis, DNA methylation, and repair. This pathway is a critical target for 5-fluorouracil (5-FU), which is predominantly used for colorectal cancer (CRC) treatment. A comprehensive assessment of polymorphisms in FOCM-related genes and their association with prognosis has not yet been performed. Within 1,739 CRC cases aged ≥30years diagnosed from 2003 to 2007 (DACHS study), we investigated 397 single nucleotide polymorphisms (SNPs) and 50 candidates in 48 FOCM-related genes for associations with overall- (OS) and disease-free survival (DFS) using multiple Cox regression (adjusted for age, sex, stage, grade, BMI, and alcohol). We investigated effect modification by 5-FU-based chemotherapy and assessed pathway-specific effects. Correction for multiple testing was performed using false discovery rates (FDR). After a median follow-up time of 5.0 years, 585 patients were deceased. For one candidate SNP in MTHFR and two in TYMS, we observed significant inverse associations with OS (MTHFR: rs1801133, C677T: HRhet=0.81, 95% CI: 0.67–0.97; TYMS: rs1001761: HRhet=0.82, 95% CI: 0.68–0.99 and rs2847149: HRhet=0.82, 95% CI: 0.68–0.99). After FDR correction, one polymorphism in paraoxonase 1 (PON1; rs3917538) was significantly associated with OS (HRhet=1.28, 95% CI: 1.07–1.53; HRhzv=2.02, 95% CI:1.46–2.80; HRlogAdd=1.31, pFDR=0.01). Adjusted pathway analyses showed significant associations for pyrimidine biosynthesis (P=0.04) and fluorouracil drug metabolism (P<0.01) with significant gene–chemotherapy interactions, including PON1 rs3917538. This study supports the concept that FOCM-related genes could be associated with CRC survival and may modify effects of 5-FU-based chemotherapy in genes in pyrimidine and fluorouracil metabolism, which are relevant targets for therapeutic response and prognosis in CRC. These results require confirmation in additional clinical studies.