Refine
Document Type
- Part of a Book (1)
- Conference Proceeding (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Information Extraction (2)
- Automatische Sprachanalyse (1)
- Bildverarbeitung (1)
- Data-Warehouse-Konzept (1)
- Maschinelles Lernen (1)
- NLP (1)
- Nierentransplantation (1)
- Text Mining (1)
- Transplantatabstoßung (1)
- data warehouse (1)
Institute
Using openEHR Archetypes for Automated Extraction of Numerical Information from Clinical Narratives
(2019)
Up to 80% of medical information is documented by unstructured data such as clinical reports written in natural language. Such data is called unstructured because the information it contains cannot be retrieved automatically as straightforward as from structured data. However, we assume that the use of this flexible kind of documentation will remain a substantial part of a patient’s medical record, so that clinical information systems have to deal appropriately with this type of information description. On the other hand, there are efforts to achieve semantic interoperability between clinical application systems through information modelling concepts like HL7 FHIR or openEHR. Considering this, we propose an approach to transform unstructured documented information into openEHR archetypes. Furthermore, we aim to support the field of clinical text mining by recognizing and publishing the connections between openEHR archetypes and heterogeneous phrasings. We have evaluated our method by extracting the values to three openEHR archetypes from unstructured documents in English and German language.
After kidney transplantation graft rejection must be prevented. Therefore, a multitude of parameters of the patient is observed pre- and postoperatively. To support this process, the Screen Reject research project is developing a data warehouse optimized for kidney rejection diagnostics. In the course of this project it was discovered that important information are only available in form of free texts instead of structured data and can therefore not be processed by standard ETL tools, which is necessary to establish a digital expert system for rejection diagnostics. Due to this reason, data integration has been improved by a combination of methods from natural language processing and methods from image processing. Based on state-of-the-art data warehousing technologies (Microsoft SSIS), a generic data integration tool has been developed. The tool was evaluated by extracting Banff-classification from 218 pathology reports and extracting HLA mismatches from about 1700 PDF files, both written in german language.