Refine
Document Type
- Article (4)
- Conference Proceeding (3)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Gesundheitsinformationssystem (2)
- Ambulatory Monitoring (1)
- Biomedical Informatics (1)
- COVID-19 (1)
- Codierung (1)
- Data Sharing (1)
- Decision Support Systems (1)
- Education (1)
- FHIR (1)
- Fachsprache (1)
Institute
Background: Fall events contribute significantly to mortality, morbidity and costs in our ageing population. In order to identify persons at risk and to target preventive measures, many scores and assessment tools have been developed. These often require expertise and are costly to implement. Recent research investigates the use of wearable inertial sensors to provide objective data on motion features which can be used to assess individual fall risk automatically. So far it is unknown how well this new method performs in comparison with conventional fall risk assessment tools. The aim of our research is to compare the predictive performance of our new sensor-based method with conventional and established methods, based on prospective data.
Methods: In a first study phase, 119 inpatients of a geriatric clinic took part in motion measurements using a wireless triaxial accelerometer during a Timed Up&Go (TUG) test and a 20 m walk. Furthermore, the St. Thomas Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) was performed, and the multidisciplinary geriatric care team estimated the patients’ fall risk. In a second follow-up phase of the study, 46 of the participants were interviewed after one year, including a fall and activity assessment. The predictive performances of the TUG, the STRATIFY and team scores are compared. Furthermore, two automatically induced logistic regression models based on conventional clinical and assessment data (CONV) as well as sensor data (SENSOR) are matched.
Results: Among the risk assessment scores, the geriatric team score (sensitivity 56%, specificity 80%) outperforms STRATIFY and TUG. The induced logistic regression models CONV and SENSOR achieve similar performance values (sensitivity 68%/58%, specificity 74%/78%, AUC 0.74/0.72, +LR 2.64/2.61). Both models are able to identify more persons at risk than the simple scores.
Conclusions: Sensor-based objective measurements of motion parameters in geriatric patients can be used to assess individual fall risk, and our prediction model’s performance matches that of a model based on conventional clinical and assessment data. Sensor-based measurements using a small wearable device may contribute significant information to conventional methods and are feasible in an unsupervised setting. More prospective research is needed to assess the cost-benefit relation of our approach.
Wearable sensors in healthcare and sensor-enhanced health information systems: all our tomorrows?
(2012)
Wearable sensor systems which allow for remote or self-monitoring of health-related parameters are regarded as one means to alleviate the consequences of demographic change. This paper aims to summarize current research in wearable sensors as well as in sensor-enhanced health information systems. Wearable sensor technologies are already advanced in terms of their technical capabilities and are frequently used for cardio-vascular monitoring. Epidemiologic predictions suggest that neuro-psychiatric diseases will have a growing impact on our health systems and thus should be addressed more intensively. Two current project examples demonstrate the benefit of wearable sensor technologies: long-term, objective measurement under daily-life, unsupervised conditions. Finally, up-to-date approaches for the implementation of sensor-enhanced health information systems are outlined. Wearable sensors are an integral part of future pervasive, ubiquitous and person-centered health
care delivery. Future challenges include their integration into sensor-enhanced health information systems and sound evaluation studies involving measures of workload reduction and costs.
Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups
(2012)
Background: Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients’ assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2).
Methods: A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital’s data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances.
Results: The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity.
Conclusions: Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting.
Fall events and their severe consequences represent not only a threatening problem for the affected individual, but also cause a significant burden for health care systems. Our research work aims to elucidate some of the prospects and problems of current sensor-based fall risk assessment approaches. Selected results of a questionnaire-based survey given to experts during topical workshops at international conferences are presented. The majority of domain experts confirmed that fall risk assessment could potentially be valuable for the community and that prediction is deemed possible, though limited. We conclude with a discussion of practical issues concerning adequate outcome parameters for clinical studies and data sharing within the research community. All participants agreed that sensor-based fall risk assessment is a promising and valuable approach, but that more prospective clinical studies with clearly defined outcome measures are necessary.
Background: Health information systems (HIS) are one of the most important areas for biomedical and health informatics. In order to professionally deal with HIS well-educated informaticians are needed. Because of these reasons, in 2001 an international course has been established: The Frank – van Swieten Lectures on Strategic Information Management of Health Information Systems.
Objectives: Reporting about the Frank – van Swieten Lectures and about our students‘ feedback on this course during the last 16 years. Summarizing our lessons learned and making recommendations for such international courses on HIS.
Methods: The basic concept of the Frank – van Swieten lectures is to teach the theoretical background in local lectures, to organize practical exercises on modelling sub-information systems of the respective local HIS and finally to conduct Joint Three Days as an international meeting were the resulting models are introduced and compared.
Results: During the last 16 years, the Universities of Amsterdam, Braunschweig, Heidelberg/Heilbronn, Leipzig as well as UMIT were involved in running this course. Overall, 517 students from these universities participated. Our students‘ feedback was clearly positive.
The Joint Three Days of the Frank – van Swieten Lectures, where at the end of the course all students can meet, turned out to be an important component of this course. Based on the last 16 years, we recommend common teaching materials, agreement on equivalent clinical areas for the exercises, support of group building of international student groups, motivation of using a collaboration platform, ensuring quality management of the course, addressing different levels of knowledge of the students, and ensuring sufficient funding for joint activities.
Conclusions: Although associated with considerable additional efforts, we can clearly recommend establishing such international courses on HIS, such as the Frank – van Swieten Lectures.
The Logical Observation Identifiers, Names and Codes (LOINC) is a common terminology used for standardizing laboratory terms. Within the consortium of the HiGHmed project, LOINC is one of the central terminologies used for health data sharing across all university sites. Therefore, linking the LOINC codes to the site-specific tests and measures is one crucial step to reach this goal. In this work we report our ongoing efforts in implementing LOINC to our laboratory information system and research infrastructure, as well as our challenges and the lessons learned. 407 local terms could be mapped to 376 LOINC codes of which 209 are already available to routine laboratory data. In our experience, mapping of local terms to LOINC is a widely manual and time consuming process for reasons of language and expert knowledge of local laboratory procedures.
The German Corona Consensus (GECCO) established a uniform dataset in FHIR format for exchanging and sharing interoperable COVID-19 patient specific data between health information systems (HIS) for universities. For sharing the COVID-19 information with other locations that use openEHR, the data are to be converted in FHIR format. In this paper, we introduce our solution through a web-tool named “openEHR-to-FHIR” that converts compositions from an openEHR repository and stores in their respective GECCO FHIR profiles. The tool provides a REST web service for ad hoc conversion of openEHR compositions to FHIR profiles.