Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Spin Crossover (2)
- (coaxial)-electrospinning (1)
- Elektrospinnen (1)
- Modification of properties (1)
- Molecular switches (1)
- PMMA (1)
- Spin transition (1)
- Triazole Complexes (1)
- Umwandlungstemperatur (1)
- composites (1)
Institute
Incorporation and Deposition of Spin Crossover Materials into and onto Electrospun Nanofibers
(2023)
We synthesized iron(II)-triazole spin crossover compounds of the type [Fe(atrz)3]X2 and incorporated and deposited them on electrospun polymer nanofibers. For this, we used two separate electrospinning methods with the goal of obtaining polymer complex composites with intact switching properties. In view of possible applications, we chose iron(II)-triazole-complexes that are known to exhibit spin crossover close to ambient temperature. Therefore, we used the complexes [Fe(atrz)3]Cl2 and [Fe(atrz)3](2ns)2 (2ns = 2-Naphthalenesulfonate) and deposited those on fibers of polymethylmethacrylate (PMMA) and incorporated them into core–shell-like PMMA fiber structures. These core–shell structures showed to be inert to outer environmental influences, such as droplets of water, which we purposely cast on the fiber structure, and it did not rinse away the used complex. We analyzed both the complexes and the composites with IR-, UV/Vis, Mössbauer spectroscopy, SQUID magnetometry, as well as SEM and EDX imaging. The analysis via UV/Vis spectroscopy, Mössbauer spectroscopy, and temperature-dependent magnetic measurements with the SQUID magnetometer showed that the spin crossover properties were maintained and were not changed after the electrospinning processes.
The phenomenon which is called spin crossover is known to occur in some coordination compounds with an octahedral ligand field and electron configurations from 3d4 to 3d7. Thereby, a reversible transition between spin states (high spin and low spin state) is possible, through several external stimuli. Iron(II) triazole complexes exhibit this phenomenon at a wide range of temperatures depending on the ligands and anions used. For this reason, they are often considered for several possible practical applications. It is also possible to combine ligands or anions to modify the transition temperature. The latter of which was rarely discussed in the past. In this study we synthesized a series of iron(II)‐4‐Aminotriazole complexes, with different ratios of chloride‐ and tetrafluoroborate‐anions, of the formula [Fe(Atrz)3]Cl2−X(BF4)X. We show that the combination of these anions leads to transition temperatures between those of their corresponding pure anion complexes. We furthermore present that a simple modification of the synthesis leads to a possible easy way of fine‐tuning transitions temperatures.