Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Metabolomik (3)
- metabolomics (3)
- Erschöpfung (2)
- Alkoholkonsum (1)
- Blutentnahme (1)
- Ernährung (1)
- Ernährungskrankheit (1)
- Geschlecht (1)
- Krebs <Medizin> (1)
- Körperliche Aktivität (1)
Institute
A major gap impeding development of new treatments for cancer-related fatigue is an inadequate understanding of the complex biological, clinical, demographic, and lifestyle mechanisms underlying fatigue. In this paper, we describe a new application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. This model framework outlined herein, which incorporates the emerging field of metabolomics, may help to frame a more in-depth analysis of the etiology of cancer-related fatigue as well as a broader and more personalized set of approaches to the clinical treatment of fatigue in oncology care. Included within this review paper is an in-depth description of the proposed biological mechanisms of cancer-related fatigue, as well as a presentation of the 3P model’s application to this phenomenon. We conclude that a clinical focus on organization risk stratification and treatment around the 3P model may be warranted, and future research may benefit from expanding the 3P model to understand fatigue not only in oncology, but also across a variety of chronic conditions.
Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.
Cancer-related fatigue (CRF) is considered one of the most frequent and distressing symptoms for cancer survivors. Despite its high prevalence, factors that predispose, precipitate, and perpetuate CRF are poorly understood. Emerging research focuses on cancer and treatment-related nutritional complications, changes in body composition, and nutritional deficiencies that can compound CRF. Nutritional metabolomics, the novel study of diet-related metabolites in cells, tissues, and biofluids, offers a promising tool to further address these research gaps. In this position paper, we examine CRF risk factors, summarize metabolomics studies of CRF, outline dietary recommendations for the prevention and management of CRF in cancer survivorship, and identify knowledge gaps and challenges in applying nutritional metabolomics to understand dietary contributions to CRF over the cancer survivorship trajectory.