Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Spin Crossover (3)
- Elektrospinnen (2)
- Mößbauer-Spektroskopie (2)
- Nanofaser (2)
- composites (2)
- coordination chemistry (2)
- molecular switch (2)
- triazole complexes (2)
- (coaxial)-electrospinning (1)
- Anion (1)
Incorporation and Deposition of Spin Crossover Materials into and onto Electrospun Nanofibers
(2023)
We synthesized iron(II)-triazole spin crossover compounds of the type [Fe(atrz)3]X2 and incorporated and deposited them on electrospun polymer nanofibers. For this, we used two separate electrospinning methods with the goal of obtaining polymer complex composites with intact switching properties. In view of possible applications, we chose iron(II)-triazole-complexes that are known to exhibit spin crossover close to ambient temperature. Therefore, we used the complexes [Fe(atrz)3]Cl2 and [Fe(atrz)3](2ns)2 (2ns = 2-Naphthalenesulfonate) and deposited those on fibers of polymethylmethacrylate (PMMA) and incorporated them into core–shell-like PMMA fiber structures. These core–shell structures showed to be inert to outer environmental influences, such as droplets of water, which we purposely cast on the fiber structure, and it did not rinse away the used complex. We analyzed both the complexes and the composites with IR-, UV/Vis, Mössbauer spectroscopy, SQUID magnetometry, as well as SEM and EDX imaging. The analysis via UV/Vis spectroscopy, Mössbauer spectroscopy, and temperature-dependent magnetic measurements with the SQUID magnetometer showed that the spin crossover properties were maintained and were not changed after the electrospinning processes.
Pressing of Functionalized Polymer Composite Materials to Improve Mössbauer Measurement Signals
(2024)
Coordination compounds, like iron(II) triazole complexes, exhibit spin crossover (SCO) behavior at around room temperature. Therefore, they are interesting for a variety of possible applications, and it is convenient to integrate them into polymers. Due to a reduction of the iron content and thus also 57Fe content in the sample through integration in polymers, Mössbauer measurements are only possible with greater difficulty or very long measurement times without expensive enrichment of the samples with 57Fe. So, other ways of improving the Mössbauer signal for these composite materials are necessary. Therefore, we pressed these composite materials to improve the Mössbauer spectra. In this study, we synthesized an iron(II) triazole spin crossover complex and an electrospun polymer complex composite nanofiber material including the same complex. For both products, Mössbauer measurements were performed at room temperature before and after using a press to show that the complex composite is not harmed through pressing. We investigate the influence of the pressing impact on the Mössbauer measurements in the context of measurement statistics and the measured signals. We show that pressing is not connected to any changes in the sample regarding the spin and oxidation state. We present that pressing improves the statistics of the Mössbauer measurements significantly. Furthermore, we use SEM measurements and PXRD to investigate whether or not the obtained fiber mats are destroyed in the pressing process.
In this work polymer nanofibers were functionalized by incorporation of the spin transition (ST) compound [Fe(H2btm)2(H2O)2]Cl2 (FeH2btm) (H2btm=di(1H‐tetrazol‐5‐yl)methane). FeH2btm is an interesting compound due to its ability to reversibly and sensitively switch between high spin (HS) and low spin (LS) state when exposed to common volatile compounds (VOC) like ammonia and methanol. By using polyvinylidene fluoride (PVDF) as the main compound, inhibiting interactions between the complex and polymer were minimized. By using UV‐Vis spectroscopy, the visible and reversible switching between HS and LS state when exposed to an ammonia or hydrochloric acid atmosphere was confirmed. Powder X‐Ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X‐Ray spectroscopy (EDX) show a homogenous distribution of FeH2btm with no major crystalline accumulations and a mean fiber diameter of 106±20 nm. The composite fiber has a similarly high thermal stability as the pure FeH2btm, as shown by thermogravimetric analysis (TGA). Mössbauer spectroscopy indicates an incomplete spin transition after exposition to ammonia. This could be due to low permeability of the VOC into the composite fiber.
In this paper we study a series of solid iron(II)‐triazole spin crossover complexes of the formula [Fe(NH2trz)3]Br2(x−1)Cl2x, where the counterions bromide and chloride are present in the same structure in different ratios. Thus, the spin transition temperature also changes in the temperature range between the pure complexes [Fe(NH2trz)3]Br2 and [Fe(NH2trz)3]Cl2. Since these switching temperatures of the pure complexes are rather far apart, this allows us to examine how the SCO behavior of iron(II) triazole complexes with mixed counterions changes with different ratios. To achieve this, the complexes were synthesized with both counterions simultaneously using the salts FeBr2 and FeCl2 ⋅ 4 H2O. The complexes were analyzed by IR and XRD measurements to confirm a successful synthesis. Energy dispersive X‐ray spectroscopy (EDX) was further used to validate the results and to verify a homogeneous distribution of the mixed anions in all samples. This study reveals a linear switching behavior of the complexes depending on the substitution ratio with a temperature range between the homo ionic samples.