Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Adsorption (1)
- Exciton Migration (1)
- Hydrogen Evolution (1)
- Ionenstrahl (1)
- Metalloxide (1)
- Monoschicht (1)
- Nanoparticles (1)
- Nanopartikel (1)
- Radiolyse (1)
- Radiolysis (1)
Institute
A novel method has been implemented to prepare metal oxide nanopowders covered with known quantities of adsorbed water; we subsequently studied the γ-radiolysis of ZrO2 nanopowders covered with H2O layers. H2 yields from the adsorbed water radiolysis are of importance in multiple industrial contexts – the nuclear industry being a prime example. Measured H2 yields at water coverages of just below and above one monolayer are around 350 times greater than for neat water, but these yields decrease rapidly with increasing water loading of the ZrO2 nanoparticles, approaching the yield of bulk water at coverages of tens of water layers. The observed plateau of the yields at 0.5 to 2.0 monolayers coverage can be explained by the ease with which electronic excitations in the ZrO2 can be transferred across the interface to the first one or two adsorbed water layers. However, with increasing water loading, energy transfer to water layers further away from the interface becomes less efficient, and above ~30 water layers, most of the water is not affected by any exciton formation in the ZrO2.
H2 production from the radiolysis of aqueous suspensions of ZnO nanoparticles by 5.5 MeV He2+ ions
(2022)
The effects of ion beam irradiation on aqueous suspensions of metal oxides has received relatively little attention compared to γ-ray irradiation despite being a highly prevalent process in spent nuclear fuel storage and reprocessing. This is partly due to the difficulties associated with homogeneously irradiating condensed-phase matter using α-particles. Here, we report experimental yields of H2 from the 5.5 MeV He2+ ion irradiation of aqueous suspensions of ZnO nanoparticles. The obtained results are compared to our previously measured results for the γ-radiolysis of the same system. The amount of H2 increases linearly with adsorbed dose for all studied concentrations. The measured yields are of the same order of magnitude as those observed for pure water, but decrease with increasing water content. Overall, the yields follow a similar trend to those observed for γ-ray radiolysis.