Refine
Document Type
- Article (3)
- Conference Proceeding (2)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Biokunststoff (3)
- Umweltbilanz (2)
- bio-based plastics (2)
- biocomposites (2)
- Bioverbundwerkstoff (1)
- Hybridwerkstoff (1)
- Kreislaufwirtschaft (1)
- Lebensdauer (1)
- Nachhaltigkeit (1)
- Naturfaser (1)
Institute
The bio-based plastic market is forecast to grow in the next years. With a growing market share and product range, the implementation of circular thinking is becoming more and more important also for bio-based plastics to enable a sound circular economy for these group of plastics. Therefore, it is important to assess the environmental performance for different end-of-life options of bio-based plastics from an early stage on. This review presents a comprehensive overview on the current status quo of different end-of-life options for bio-based plastics from an environmental perspective. Based on the status quo and the corresponding impact assessment results, the global plastic demand as well as the technical substitution potential of bio-based plastics, the environmental saving potential in case of the different end-of-life options was calculated. The review shows that there is a focus on polylactic acid (PLA) regarding end-of-life assessment, with studies covering all end-of-life options. The focus of the impact assessment has been set on global warming potential (GWP). With respect to GWP, the analysis of a future global potential of PLA showed, for mechanical recycling, the highest saving potential with 94.1 Mio. t CO2-eq. per year in comparison to virgin material.
This feasibility study investigates the flexural properties of biocomposites containing woven flax textiles (plain, twill, satin) and woven twill patterned hybrid textiles containing flax-/glass or flax-/carbon mixture for lightweight applications. Synthetic fibers are integrated as weft and flax fibers are integrated as warp yarns using a double-rapier weaving machine with a Jacquard attachment. The corresponding biocomposites are manufactured via vacuum infusion process using a biobased epoxy resin as a matrix. The manufactured biocomposites are analyzed with regard to their density and flexural properties. The results show that the use of hybrid textiles offers a promising solution for the manufacture of biocomposites with a higher biobased content and significantly improved flexural properties. Furthermore, the introduction of high-performance synthetic fibers in textiles enables the manufacture of biocomposites with an isotropic mechanical performance.
Against the background of climate change and finite fossil resources, bio-based plastics have been in the focus of research for the last decade and were identified as a promising alternative to fossil-based plastics. Now, with an evolving bio-based plastic market and application range, the environmental advantages of bio-based plastic have come to the fore and identified as crucial by different stakeholders. While the majority of assessments for bio-based plastics are carried out based on attributional life cycle assessment, there have been only few consequential studies done in this area. Also, the application of eco-design strategies has not been in the focus for the bio-based products due to the prevailing misconceptions of renewable materials (as feedstock for bio-based plastics) considered in itself as an ‘eco-design strategy’. In this paper, we discuss the life cycle assessment as well as eco-design strategies of a bio-based product taking attributional as well as consequential approaches into account.
The technical, environmental and economic potential of hemp fines as a natural filler in bioplastics to produce biocomposites is the subject of this study – giving a holistic overview. Hemp fines are an agricultural by-product of the hemp fibres and shives production. Shives and fibres are for example used in the paper, animal bedding or composite area. About 15 to 20 wt.-% per kg hemp straw results in hemp fines after processing. In 2010 about 11,439 metric tons of hemp fines were produced in Europe. Hemp fines are an inhomogeneous material which includes hemp dust, shives and fibre. For these examinations the hemp fines are sieved in a further step with a tumbler sieving machine to obtain more specified fractions. The untreated hemp fines (ex work) as well as the sieved fractions are combined with a polylactide polymer (PLA) using a co-rotating twin screw extruder to produce biocomposites with different hemp fine content. By using an injection moulding machine standard test bars are produced to conduct several material tests. The Young’s modulus is increased and the impact strength reduced by hemp fines. With a content of above 15 wt.-% hemp fines are also improving the environmental (global warming potential) and economic performance in comparison to pure PLA.