Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Dickdarmkrebs (5)
- Kynurenin (2)
- Metabolit (2)
- Metabolomik (2)
- colorectal cancer (2)
- metabolomics (2)
- Überleben (2)
- Alkoholkonsum (1)
- Angst (1)
- Anxiety (1)
Institute
Background: Folates, including folic acid, may play a dual role in colorectal cancer development. Folate is suggested to be protective in early carcinogenesis but could accelerate growth of premalignant lesions or micrometastases. Whether circulating concentrations of folate and folic acid, measured around time of diagnosis, are associated with recurrence and survival in colorectal cancer patients is largely unknown.
Methods: Circulating concentrations of folate, folic acid, and folate catabolites p-aminobenzoylglutamate and p-acetamidobenzoylglutamate were measured by liquid chromatography-tandem mass spectrometry at diagnosis in 2024 stage I-III colorectal cancer patients from European and US patient cohort studies. Multivariable-adjusted Cox proportional hazard models were used to assess associations between folate, folic acid, and folate catabolites concentrations with recurrence, overall survival, and disease-free survival.
Results: No statistically significant associations were observed between folate, p-aminobenzoylglutamate, and p-acetamidobenzoylglutamate concentrations and recurrence, overall survival, and disease-free survival, with hazard ratios ranging from 0.92 to 1.16. The detection of folic acid in the circulation (yes or no) was not associated with any outcome. However, among patients with detectable folic acid concentrations (n = 296), a higher risk of recurrence was observed for each twofold increase in folic acid (hazard ratio = 1.31, 95% confidence interval = 1.02 to 1.58). No statistically significant associations were found between folic acid concentrations and overall and disease-free survival.
Conclusions: Circulating folate and folate catabolite concentrations at colorectal cancer diagnosis were not associated with recurrence and survival. However, caution is warranted for high blood concentrations of folic acid because they may increase the risk of colorectal cancer recurrence.
Colorectal cancer is the second most common cause of cancer-related death globally, with marked differences in prognosis by disease stage at diagnosis. We studied circulating metabolites in relation to disease stage to improve the understanding of metabolic pathways related to colorectal cancer progression. We investigated plasma concentrations of 130 metabolites among 744 Stages I–IV colorectal cancer patients from ongoing cohort studies. Plasma samples, collected at diagnosis, were analyzed with liquid chromatography-mass spectrometry using the Biocrates AbsoluteIDQ™ p180 kit. We assessed associations between metabolite concentrations and stage using multinomial and multivariable logistic regression models. Analyses were adjusted for potential confounders as well as multiple testing using false discovery rate (FDR) correction. Patients presented with 23, 28, 39 and 10% of Stages I–IV disease, respectively. Concentrations of sphingomyelin C26:0 were lower in Stage III patients compared to Stage I patients (pFDR < 0.05). Concentrations of sphingomyelin C18:0 and phosphatidylcholine (diacyl) C32:0 were statistically significantly higher, while citrulline, histidine, phosphatidylcholine (diacyl) C34:4, phosphatidylcholine (acyl-alkyl) C40:1 and lysophosphatidylcholines (acyl) C16:0 and C17:0 concentrations were lower in Stage IV compared to Stage I patients (pFDR < 0.05). Our results suggest that metabolic pathways involving among others citrulline and histidine, implicated previously in colorectal cancer development, may also be linked to colorectal cancer progression.
Purpose: The overarching goal of the FOCUS (biomarkers related to folate-dependent one-carbon metabolism in colorectal cancer (CRC) recurrence and survival) Consortium is to unravel the effect of folate and folate-mediated one-carbon metabolism (FOCM) biomarkers on CRC prognosis to provide clinically relevant advice on folate intake to cancer patients and define future tertiary prevention strategies.
Participants: The FOCUS Consortium is an international, prospective cohort of 2401 women and men above 18 years of age who were diagnosed with a primary invasive non-metastatic (stages I–III) CRC. The consortium comprises patients from Austria, two sites from the Netherlands, Germany and two sites from the USA. Patients are recruited after CRC diagnosis and followed at 6 and 12 months after enrolment. At each time point, sociodemographic data, data on health behaviour and clinical data are collected, blood samples are drawn.
Findings to date: An increased risk of cancer recurrences was observed among patients with higher compared with lower circulating folic acid concentrations. Furthermore, specific folate species within the FOCM pathway were associated with both inflammation and angiogenesis pathways among patients with CRC. In addition, higher vitamin B6 status was associated with better quality of life at 6 months post-treatment.
Future plans: Better insights into the research on associations between folate and FOCM biomarkers and clinical outcomes in patients with CRC will facilitate the development of guidelines regarding folate intake in order to provide clinically relevant advice to patients with cancer, health professionals involved in patient care, and ultimately further tertiary prevention strategies in the future. The FOCUS Consortium offers an excellent infrastructure for short-term and long-term research projects and for combining additional biomarkers and data resulting from the individual cohorts within the next years, for example, microbiome data, omics and multiomics data or CT-quantified body composition data.
Introduction: Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment.
Methods: In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing.
Results: Higher plasma tryptophan concentrations were associated with lower depression scores (β as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: −0.31; 95%CI: −0.56,−0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (−0.26; −0.52,−0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (−0.60; −1.12,−0.09), xanthurenic acid with total anxiety and depression (−1.04; −1.99,−0.10), anxiety (−0.51; −1.01,−0.01), and depression (−0.56; −1.08,−0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (−0.47; −0.93,−0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment.
Conclusion: We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.
The tryptophan-kynurenine pathway has been linked to cancer aetiology and survivorship, and diet potentially affects metabolites of this pathway, but evidence to date is scarce. Among 247 stage I-III CRC survivors, repeated measurements were performed at 6 weeks, 6 months, and 1 year post-treatment. Adherence to the World Cancer Research Fund/ American Institute for Cancer Research (WCRF) and Dutch Healthy Diet (DHD) recommendations was operationalized using seven-day dietary records. Plasma kynurenines of nine metabolites were analysed. Longitudinal associations of adherence to these dietary patterns and plasma kynurenines were analysed using confounder-adjusted linear mixed-models. In general, higher adherence to the dietary WCRF/AICR and DHD recommendations was associated with lower concentrations of kynurenines with pro-oxidative, pro-inflammatory, and neurotoxic properties (3-hydroxykynurenine (HK) and quinolinic acid (QA)), and higher concentrations of kynurenines with anti-oxidative, anti-inflammatory, and neuroprotective properties (kynurenic acid (KA) and picolinic acid (Pic)), but associations were weak and not statistically significant. Statistically significant positive associations between individual recommendations and kynurenines were observed for: nuts with kynurenic-acid-to-quinolinic-acid ratio (KA/QA); alcohol with KA/QA, KA, and xanthurenic acid (XA); red meat with XA; and cheese with XA. Statistically significant inverse associations were observed for: nuts with kynurenine-to-tryptophan ratio (KTR) and hydroxykynurenine ratio; alcohol with KTR; red meat with 3-hydroxyanthranilic-to-3-hydroxykynurenine ratio; ultra-processed foods with XA and KA/QA; and sweetened beverages with KA/QA. Our findings suggest that CRC survivors might benefit from adhering to the dietary WCRF and DHD recommendations in the first year after treatment, as higher adherence to these dietary patterns is generally, but weakly associated with more favourable concentrations of kynurenines and their ratios. These results need to be validated in other studies.
Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.