Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Prognose (2)
- Body-Mass-Index (1)
- Chirurgie (1)
- Darmkrebs (1)
- Dickdarmkrebs (1)
- FGF2 (1)
- Fettsucht (1)
- Fibroblastenwachstumsfaktor (1)
- Fusobacterium nucleatum (1)
- Kachexie (1)
Institute
Background: Cachexia accounts for about 20% of all cancer‐related deaths and indicates poor prognosis. The impact of Fusobacterium nucleatum (Fn), a microbial risk factor for colorectal cancer (CRC), on the development of cachexia in CRC has not been established.
Methods: We evaluated the association between Fn abundance in pre‐surgical stool samples and onset of cachexia at 6 months post‐surgery in n = 87 patients with stages I–III CRC in the ColoCare Study.
Results: High fecal Fn abundance compared to negative/low fecal Fn abundance was associated with 4‐fold increased risk of cachexia onset at 6 months post‐surgery (OR = 4.82, 95% CI = 1.15, 20.10, p = 0.03).
Conclusion: Our findings suggest that high fecal Fn abundance was associated with an increased risk of cachexia at 6 months post‐surgery in CRC patients. This is the first study to link Fn abundance with cachexia in CRC patients, offering novel insights into biological mechanisms and potential management of cancer cachexia. Due to the small sample size, our results should be interpreted with caution. Future studies with larger sample sizes are needed to validate these findings.
Obesity and excess adiposity account for approximately 20% of all cancer cases; however, biomarkers of risk remain to be elucidated. While fibroblast growth factor-2 (FGF2) is emerging as an attractive candidate biomarker for visceral adipose tissue mass, the role of circulating FGF2 in malignant transformation remains unknown. Moreover, functional assays for biomarker discovery are limited. We sought to determine if human serum could stimulate the 3D growth of a non-tumorigenic cell line. This type of anchorage-independent 3D growth in soft agar is a surrogate marker for acquired tumorigenicity of cell lines. We found that human serum from cancer-free men and women has the potential to stimulate growth in soft agar of non-tumorigenic epithelial JB6 P+ cells. We examined circulating levels of FGF2 in humans in malignant transformation in vitro in a pilot study of n = 33 men and women. Serum FGF2 levels were not associated with colony formation in epithelial cells (r = 0.05, p = 0.80); however, a fibroblast growth factor receptor-1 (FGFR1) selective inhibitor significantly blocked serum-stimulated transformation, suggesting that FGF2 activation of FGFR1 may be necessary, but not sufficient for the transforming effects of human serum. This pilot study indicates that the FGF2/FGFR1 axis plays a role in JB6 P+ malignant transformation and describes an assay to determine critical serum factors that have the potential to promote tumorigenesis.
Alterations within the tryptophan–kynurenine metabolic pathway have been linked to the etiology of colorectal cancer (CRC), but the relevance of this pathway for prognostic outcomes in CRC patients needs further elucidation. Therefore, we investigated associations between circulating concentrations of tryptophan–kynurenine pathway metabolites and all‐cause mortality among CRC patients. This study utilizes data from 2102 stage I–III CRC patients participating in six prospective cohorts involved in the international FOCUS Consortium. Preoperative circulating concentrations of tryptophan, kynurenine, kynurenic acid (KA), 3‐hydroxykynurenine (HK), xanthurenic acid (XA), 3‐hydroxyanthranilic acid (HAA), anthranilic acid (AA), picolinic acid (PA), and quinolinic acid (QA) were measured by liquid chromatography–tandem mass spectrometry. Using Cox proportional hazards regression, we examined associations of above‐mentioned metabolites with all‐cause mortality, adjusted for potential confounders. During a median follow‐up of 3.2 years (interquartile range: 2.2–4.9), 290 patients (13.8%) deceased. Higher blood concentrations of tryptophan, XA, and PA were associated with a lower risk of all‐cause mortality (per doubling in concentrations: tryptophan: HR = 0.56; 95%CI:0.41,0.76, XA: HR = 0.74; 95%CI:0.64,0.85, PA: HR = 0.76; 95%CI:0.64,0.92), while higher concentrations of HK and QA were associated with an increased risk of death (per doubling in concentrations: HK: HR = 1.80; 95%CI:1.47,2.21, QA: HR = 1.31; 95%CI:1.05,1.63). A higher kynurenine‐to‐tryptophan ratio, a marker of cell‐mediated immune activation, was associated with an increased risk of death (per doubling: HR = 2.07; 95%CI:1.52,2.83). In conclusion, tryptophan–kynurenine pathway metabolites may be prognostic markers of survival in CRC patients.