Refine
Document Type
- Conference Proceeding (18)
- Article (3)
- Working Paper (3)
- Other (1)
- Preprint (1)
Keywords
- Klassifikation (3)
- Open Access (3)
- Semantik (3)
- Text Mining (3)
- Computerlinguistik (2)
- Contract Analysis (2)
- Distributional Semantics (2)
- Informationsmanagement (2)
- Keyword Extraction (2)
- Machine Learning (2)
Scientific papers from all disciplines contain many abbreviations and acronyms. In many cases these acronyms are ambiguous. We present a method to choose the contextual correct definition of an acronym that does not require training for each acronym and thus can be applied to a large number of different acronyms with only few instances. We constructed a set of 19,954 examples of 4,365 ambiguous acronyms from image captions in scientific papers along with their contextually correct definition from different domains. We learn word embeddings for all words in the corpus and compare the averaged context vector of the words in the expansion of an acronym with the weighted average vector of the words in the context of the acronym. We show that this method clearly outperforms (classical) cosine similarity. Furthermore, we show that word embeddings learned from a 1 billion word corpus of scientific exts outperform word embeddings learned from much larger general corpora.
Automatic classification of scientific records using the German Subject Heading Authority File (SWD)
(2012)
The following paper deals with an automatic text classification method which does not require training documents. For this method the German Subject Heading Authority File (SWD), provided by the linked data service of the German National Library is used. Recently the SWD was enriched with notations of the Dewey Decimal Classification (DDC). In consequence it became possible to utilize the subject headings as textual representations for the notations of the DDC. Basically, we we derive the classification of a text from the classification of the words in the text given by the thesaurus. The method was tested by classifying 3826 OAI-Records from 7 different repositories. Mean reciprocal rank and recall were chosen as evaluation measure. Direct comparison to a machine learning method has shown that this method is definitely competitive. Thus we can conclude that the enriched version of the SWD provides high quality information with a broad coverage for classification of German scientific articles.
The amount of papers published yearly increases since decades. Libraries need to make these resources accessible and available with classification being an important aspect and part of this process. This paper analyzes prerequisites and possibilities of automatic classification of medical literature. We explain the selection, preprocessing and analysis of data consisting of catalogue datasets from the library of the Hanover Medical School, Lower Saxony, Germany. In the present study, 19,348 documents, represented by notations of library classification systems such as e.g. the Dewey Decimal Classification (DDC), were classified into 514 different classes from the National Library of Medicine (NLM) classification system. The algorithm used was k-nearest-neighbours (kNN). A correct classification rate of 55.7% could be achieved. To the best of our knowledge, this is not only the first research conducted towards the use of the NLM classification in automatic classification but also the first approach that exclusively considers already assigned notations from other
classification systems for this purpose.
Editorial for the 17th European Networked Knowledge Organization Systems Workshop (NKOS 2017)
(2017)
Knowledge Organization Systems (KOS), in the form of classification systems, thesauri, lexical databases, ontologies, and taxonomies, play a crucial role in digital information management and applications generally. Carrying semantics in a well-controlled and documented way, Knowledge Organization Systems serve a variety of important functions: tools for representation and indexing of information and documents, knowledge-based support to information searchers, semantic road maps to domains and disciplines, communication tool by providing conceptual framework, and conceptual basis for knowledge based systems, e.g. automated classification systems. New networked KOS (NKOS) services and applications are emerging, and we have reached a stage where many KOS standards exist and the integration of linked services is no longer just a future scenario. This editorial describes the workshop outline and overview of presented papers at the 17th European Networked Knowledge Organization Systems Workshop (NKOS 2017) which was held during the TPDL 2017 Conference in Thessaloniki, Greece.
Distributional semantics tries to characterize the meaning of words by the contexts in which they occur. Similarity of words hence can be derived from the similarity of contexts. Contexts of a word are usually vectors of words appearing near to that word in a corpus. It was observed in previous research that similarity measures for the context vectors of two words depend on the frequency of these words. In the present paper we investigate this dependency in more detail for one similarity measure, the Jensen-Shannon divergence. We give an empirical model of this dependency and propose the deviation of the observed Jensen-Shannon divergence from the divergence expected on the basis of the frequencies of the words as an alternative similarity measure. We show that this new similarity measure is superior to both the Jensen-Shannon divergence and the cosine similarity in a task, in which pairs of words, taken from Wordnet, have to be classified as being synonyms or not.
The dependency of word similarity in vector space models on the frequency of words has been noted in a few studies, but has received very little attention. We study the influence of word frequency in a set of 10 000 randomly selected word pairs for a number of different combinations of feature weighting schemes and similarity measures. We find that the similarity of word pairs for all methods, except for the one using singular value decomposition to reduce the dimensionality of the feature space, is determined to a large extent by the frequency of the words. In a binary classification task of pairs of synonyms and unrelated words we find that for all similarity measures the results can be improved when we correct for the frequency bias.
Editorial for the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016)
(2016)
Knowledge Organization Systems (KOS), in the form of classification systems, thesauri, lexical databases, ontologies, and taxonomies, play a crucial role in digital information management and applications generally. Carrying semantics in a well-controlled and documented way, Knowledge Organisation Systems serve a variety of important functions: tools for representation and indexing of information and documents, knowledge-based support to information searchers, semantic road maps to domains and disciplines, communication tool by providing conceptual framework, and conceptual basis for knowledge based systems, e.g. automated classification systems. New networked KOS (NKOS) services and applications are emerging, and we have reached a stage where many KOS standards exist and the integration of linked services is no longer just a future scenario. This editorial describes the workshop outline and overview of presented papers at the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016) in Hannover, Germany.
NOA is a search engine for scientific images from open access publications based on full text indexing of all text referring to the images and filtering for disciplines and image type. Images will be annotated with Wikipedia categories for better discoverability and for uploading to WikiCommons. Currently we have indexed approximately 2,7 Million images from over 710 000 scientific papers from all fields of science.
This paper summarizes the results of a comprehensive statistical analysis on a corpus of open access articles and contained figures. It gives an insight into quantitative relationships between illustrations or types of illustrations, caption lengths, subjects, publishers, author affiliations, article citations and others.
In distributional semantics words are represented by aggregated context features. The similarity of words can be computed by comparing their feature vectors. Thus, we can predict whether two words are synonymous or similar with respect to some other semantic relation. We will show on six different datasets of pairs of similar and non-similar words that a supervised learning algorithm on feature vectors representing pairs of words outperforms cosine similarity between vectors representing single words. We compared different methods to construct a feature vector representing a pair of words. We show that simple methods like pairwise addition or multiplication give better results than a recently proposed method that combines different types of features. The semantic relation we consider is relatedness of terms in thesauri for intellectual document classification. Thus our findings can directly be applied for the maintenance and extension of such thesauri. To the best of our knowledge this relation was not considered before in the field of distributional semantics.