Refine
Keywords
- Aphasia (1)
- Aphasie (1)
- Arcuate fasciculus (1)
- Brain tumor (1)
- Cyber-Knife (1)
- CyberKnife (1)
- DTI (1)
- Diffusionsgewichtete Magnetresonanztomografie (1)
- Fasciculus arcuatus (1)
- Gliom (1)
Background: Stereotactic radiosurgery (SRS) is an effective treatment for trigeminal neuralgia (TN). Nevertheless, a proportion of patients will experience recurrence and treatment-related sensory disturbances. In order to evaluate the predictors of efficacy and safety of image-guided non-isocentric radiosurgery, we analyzed the impact of trigeminal nerve volume and the nerve dose/volume relationship, together with relevant clinical characteristics.
Methods: Two-hundred and ninety-six procedures were performed on 262 patients at three centers. In 17 patients the TN was secondary to multiple sclerosis (MS). Trigeminal pain and sensory disturbances were classified according to the Barrow Neurological Institute (BNI) scale. Pain-free-intervals were investigated using Kaplan Meier analyses. Univariate and multivariate Cox regression analyses were performed to identify predictors.
Results: The median follow-up period was 38 months, median maximal dose 72.4 Gy, median target nerve volume 25mm3, and median prescription dose 60 Gy. Pain control rate (BNI I-III) at 6, 12, 24, 36, 48, and 60 months were 96.8, 90.9, 84.2, 81.4, 74.2, and 71.2%, respectively. Overall, 18% of patients developed sensory disturbances. Patients with volume ≥ 30mm3 were more likely to maintain pain relief (p = 0.031), and low integral dose (< 1.4 mJ) tended to be associated with more pain recurrence than intermediate (1.4–2.7 mJ) or high integral dose (> 2.7 mJ; low vs. intermediate: log-rank test, χ2 = 5.02, p = 0.019; low vs. high: log-rank test, χ2 = 6.026, p = 0.014). MS, integral dose, and mean dose were the factors associated with pain recurrence, while re-irradiation and MS were predictors for sensory disturbance in the multivariate analysis.
Conclusions: The dose to nerve volume ratio is predictive of pain recurrence in TN, and re-irradiation has a major impact on the development of sensory disturbances after non-isocentric SRS. Interestingly, the integral dose may differ significantly in treatments using apparently similar dose and volume constraints.
Objectives: Injury to major white matter pathways during language-area associated glioma surgery often leads to permanent loss of neurological function. The aim was to establish standardized tractography of language pathways as a predictor of language outcome in clinical neurosurgery.
Methods: We prospectively analyzed 50 surgical cases of patients with left perisylvian, diffuse gliomas. Standardized preoperative Diffusion-Tensor-Imaging (DTI)-based tractography of the 5 main language tracts (Arcuate Fasciculus [AF], Frontal Aslant Tract [FAT], Inferior Fronto-Occipital Fasciculus [IFOF], Inferior Longitudinal Fasciculus [ILF], Uncinate Fasciculus [UF]) and spatial analysis of tumor and tracts was performed. Postoperative imaging and the resulting resection map were analyzed for potential surgical injury of tracts. The language status was assessed preoperatively, postoperatively and after 3 months using the Aachen Aphasia Test and Berlin Aphasia Score. Correlation analyses, two-step cluster analysis and binary logistic regression were used to analyze associations of tractography results with language outcome after surgery.
Results: In 14 out of 50 patients (28%), new aphasic symptoms were detected 3 months after surgery. The preoperative infiltration of the AF was associated with functional worsening (cc = 0.314; p = 0.019). Cluster analysis of tract injury profiles revealed two areas particularly related to aphasia: the temporo-parieto-occipital junction (TPO; temporo-parietal AF, middle IFOF, middle ILF) and the temporal stem/peri-insular white matter (middle IFOF, anterior ILF, temporal UF, temporal AF). Injury to these areas (TPO: OR: 23.04; CI: 4.11 – 129.06; temporal stem: OR: 21.96; CI: 2.93 – 164.41) was associated with a higher-risk of persisting aphasia.
Conclusions: Tractography of language pathways can help to determine the individual aphasia risk profile presurgically. The TPO and temporal stem/peri-insular white matter were confirmed as functional nodes particularly sensitive to surgical injuries.