Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Polyacrylnitril (3)
- polyacrylonitrile (2)
- Anisotropie (1)
- Carbon nanofibers (1)
- Cyclization (1)
- Graphen (1)
- Graphitization (1)
- Klimt, Gustav (1)
- Klimt: “Trompetender Putto” (1)
- Kohlenstofffaser (1)
Institute
Improving the graphitic structure in carbon nanofibers (CNFs) is important for exploiting their potential in mechanical, electrical and electrochemical applications. Typically, the synthesis of carbon fibers with a highly graphitized structure demands a high temperature of almost 2500 °C. Furthermore, to achieve an improved graphitic structure, the stabilization of a precursor fiber has to be assisted by the presence of tension in order to enhance the molecular orientation. Keeping this in view, herein we report on the fabrication of graphene nanoplatelets (GNPs) doped carbon nanofibers using electrospinning followed by oxidative stabilization and carbonization. The effect of doping GNPs on the graphitic structure was investigated by carbonizing them at various temperatures (1000 °C, 1200 °C, 1500 °C and 1700 °C). Additionally, a stabilization was achieved with and without constant creep stress (only shrinkage stress) for both pristine and doped precursor nanofibers, which were eventually carbonized at 1700 °C. Our findings reveal that the GNPs doping results in improving the graphitic structure of polyacrylonitrile (PAN). Further, in addition to the templating effect during the nucleation and growth of graphitic crystals, the GNPs encapsulated in the PAN nanofiber matrix act in-situ as micro clamp units performing the anchoring function by preventing the loss of molecular orientation during the stabilization stage, when no external tension is applied to nanofiber mats. The templating effect of the entire graphitization process is reflected by an increased electrical conductivity along the fibers. Simultaneously, the electrical anisotropy is reduced, i.e., the GNPs provide effective pathways with improved conductivity acting like bridges between the nanofibers resulting in an improved conductivity across the fiber direction compared to the pristine PAN system.
The properties of these carbon nanostructures are determined by the structure and orientation of the graphitic domains during pyrolysis of carbon precursors. In this work, we investigated systematically the impact of creep stress during the stabilization process on the cyclization and molecular orientation of polyacrylonitrile as well as the graphitized structure after high temperature carbonization. Therefore, polyacrylonitrile (PAN) is electrospun and then stabilized with and without application of creep stress at different temperatures. The effect of creep stress on cyclization was monitored via Fourier transform IR spectroscopy (FTIR) and it was found that the degree of cyclization varies with the application of creep stress during the initial stages of cyclization at low temperatures (190°C and 210°C) in contrast to cyclization done at higher temperature (230°C). Herman molecular orientation factor was evaluated by polarized FTIR for PAN nanofibers cyclized with and without creep stress at 230°C-10 h. Subsequently, carbonization was performed at 1000°C and 1200°C for nanofibers cyclized at 230°C-10 h. Our results from XRD and Raman spectroscopy shows that the degree of graphitization and ordering of graphitic domains was enhanced for PAN nanofibers that were creep stressed during the cyclization process, even though both PAN nanofibers cyclized with creep stress and without creep stress showed the same amount of cyclized material. This increased degree of graphitization can be tracked to application of creep stress during the stabilization process which obviously favors the formation of sp2-hybridized carbon planes in the carbonization process. This finding highlights the impact of mechanical stress linking the cyclization of PAN nanofibers to graphitization.
Our results will pave the way for a deeper understanding of mechano-chemical processes to fabricate well-aligned graphitic domains which improves the mechanical and electrical properties of CNFs.
Material tests were performed on a rediscovered Klimt-artwork “Trompetender Putto”. We performed studies on the red colored spots, mainly taken from non-restored parts. MIMOS II Fe-57 Mössbauer spectroscopy (novelty in art-pigment analysis) mainly reveals haematite and crystallized goethite in red colors. Electron microscopy can identify various layers of the original and overpainting of an artwork. The number of layers fluctuates between three and four chemically painted areas. The portable X-ray fluorescence analysis enables to reduce the pigment list to containing mercury (cinnabar), lead, zinc, iron and titanium. Infrared-lightirradiation visualizes the different age of the pigments.
Electrospinning with consequent thermal treatment consists in a carbon fiber production method that spins a polymer solution to create fibers with diameters around a few hundred nanometers. The thermal treatments are used for the cyclization and then carbonization of the material at 1700 °C for one hour. The unique structure of micro- and nano-carbon fibers makes them a promising material for various applications ranging from future battery designs to filtration. This work investigated the possibility of using milled gasification biochar, derived from a 20 kW fixed-bed gasifier fueled with vine pruning pellets, as an addictive in the preparation of electrospinning solutions. This study outlined that solvent cleaning and the consequent wet-milling and 32 µm sifting are fundamental passages for biochar preparation. Four different polyacrylonitrile-biochar shares were tested ranging from pure polymer to 50–50% solutions. The resulting fibers were analyzed via scanning electron microscopy, and energy-dispersive X-ray and infrared spectroscopy. Results from the morphological analysis showed that biochar grains dispersed themselves well among the fiber mat in all the proposed shares. All the tested solutions, once carbonized, exceeded 97%wt. of carbon content. At higher carbonization temperatures, the inorganic compounds naturally showing in biochar such as potassium and calcium disappeared, resulting in an almost carbon-pure fiber matrix with biochar grains in between.