Refine
Year of publication
- 2018 (4) (remove)
Document Type
- Article (3)
- Conference Proceeding (1)
Keywords
- Bioactive peptides (1)
- Biokunststoff (1)
- Continuous process (1)
- Euterentzündung (1)
- Food protein (1)
- Gen (1)
- Immobilization (1)
- Infektion (1)
- Milchkuh (1)
- Proteases (1)
Institute
- Fakultät II - Maschinenbau und Bioverfahrenstechnik (4) (remove)
Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight different countries that were genotyped by RS-PCR and investigated for 26 different virulence factors to increase the knowledge on the circulating genetic lineages among the cow population with mastitis. New genotypes were observed for South African strains while for all the other countries new variants of existing genotypes were detected. For each country, a specific genotypic pattern was found. Among the virulence factors, fmtB, cna, clfA and leucocidins genes were the most frequent. The sea and sei genes were present in seven out of eight countries; seh showed high frequency in South American countries (Brazil, Colombia, Argentina), while sel was harboured especially in one Mediterranean country (Tunisia). The etb, seb and see genes were not detected in any of the isolates, while only two isolates were MRSA (Germany and Italy) confirming the low diffusion of methicillin resistance microorganism among bovine mastitis isolates. This work demonstrated the wide variety of S. aureus genotypes found in dairy cattle worldwide. This condition suggests that considering the region of interest might help to formulate strategies for reducing the infection spreading.
A nonblinded, positively controlled, noninferiority trial was conducted to evaluate the efficacy of an alternative, nonantibiotic therapy with Masti Veyxym® to reduce ineffective antibiotic usage in the treatment of nonsevere clinical mastitis (CM) in cows with longer lasting udder diseases. The solely intramammary treatment with Masti Veyxym® (three applications, 12 hr apart) and the combined treatment with Masti Veyxym® and antibiotics as usual on the farm according to label of the respective product were compared with the reference treatment of solely antibiotic therapy. The matched field study was conducted on eight free-stall dairy farms located in Eastern Germany. Cases of mild-to-moderate CM in cows with longer lasting high somatic cell counts in preceding dairy herd improvement test days and with previous CM cases in current lactation were randomly allocated to one of the three treatment groups. A foremilk sample of the affected quarter was taken before treatment and again approximately 14 days and 21 days after the end of therapy for cyto-bacteriological examination. Primary outcomes were clinical cure (CC) and no CM recurrence within 60 days after the end of treatment (no R60). Bacteriological cure (BC) and quarter somatic cell count (QSCC) cure were chosen as secondary outcomes although low probabilities of BC and QSCC cure for selected cows were expected. The study resulted in the following findings: the pathogens mostly cultured from pretreatment samples were Streptococcus uberis, followed by Staphylococcus aureus and coagulase-negative staphylococci. There were no significant differences between the two test treatments in comparison with the reference treatment regarding all outcome variables. The sole therapy with Masti Veyxym® resulted in a numerically lower likelihood of BC without significant differences to the reference treatment. The combined therapy group showed a numerically higher nonrecurrence rate than the two other treatment groups and noninferiority compared to the reference treatment was proven. Having regard to the selection criteria of cows in this study, the findings indicated that sole treatment with Masti Veyxym® in nonsevere CM cases may constitute an alternative therapy to reduce antibiotics. However, noninferiority evaluations were mostly inconclusive. Further investigations with a larger sample size are required to confirm the results and to make a clear statement on noninferiority.
Against the background of climate change and finite fossil resources, bio-based plastics have been in the focus of research for the last decade and were identified as a promising alternative to fossil-based plastics. Now, with an evolving bio-based plastic market and application range, the environmental advantages of bio-based plastic have come to the fore and identified as crucial by different stakeholders. While the majority of assessments for bio-based plastics are carried out based on attributional life cycle assessment, there have been only few consequential studies done in this area. Also, the application of eco-design strategies has not been in the focus for the bio-based products due to the prevailing misconceptions of renewable materials (as feedstock for bio-based plastics) considered in itself as an ‘eco-design strategy’. In this paper, we discuss the life cycle assessment as well as eco-design strategies of a bio-based product taking attributional as well as consequential approaches into account.
Food protein hydrolysates are often produced in unspecific industrial batch processes. The hydrolysates composition underlies process-related fluctuations and therefore the obtained peptide fingerprint and bioactive properties may vary. To overcome this obstacle and enable the production of specific hydrolysates with selected peptides, a ceramic capillary system was developed and characterized for the continuous production of a consistent peptide composition. Therefore, the protease Alcalase was immobilized on the surface of aminosilane modified yttria stabilized zirconia capillaries with a pore size of 1.5 μm. The loading capacity was 0.3 μg enzyme per mg of capillary with a residual enzyme activity of 43%. The enzyme specific peptide fingerprint produced with this proteolytic capillary reactor system correlated with the degree of hydrolysis, which can be controlled over the residence time by adjusting the flow rate. Common food proteins like casein, sunflower and lupin protein isolates were tested for continuous hydrolysis in the developed reactor system. The peptide formation was investigated by high-performance liquid chromatography. Various trends were found for the occurrence of specific peptides. Some are just intermediately occurring, while others cumulate by time. Thus, the developed continuous reactor system enables the production of specific peptides with desired bioactive properties.