Refine
Year of publication
Document Type
- Article (144)
- Conference Proceeding (17)
- Periodical Part (9)
- Report (9)
- Book (7)
- Part of a Book (5)
- Course Material (1)
- Master's Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (194)
Is part of the Bibliography
- no (194)
Keywords
- Logistik (20)
- Milchwirtschaft (20)
- Euterentzündung (18)
- Molkerei (13)
- bioplastics (9)
- biopolymers (9)
- land use (9)
- market data facts (9)
- Klebeverbindung (8)
- PPS (8)
Institute
- Fakultät II - Maschinenbau und Bioverfahrenstechnik (194) (remove)
Antimicrobials are widely used to cure intramammary infections (IMI) in dairy cows during the dry period (DP). Nevertheless, the IMI cure is influenced by many factors and not all quarters benefit from antimicrobial dry cow treatment (DCT). To evaluate the true effect of antibiotic DCT compared to self-cure and the role of causative pathogens on the IMI cure, a retrospective cross-sectional study was performed. The analysis included 2987 quarters infected at dry-off (DO). Information on DCT, causative pathogens, somatic cell count, milk yield, amount of lactation, Body Condition Score, and season and year of DO were combined into categorical variables. A generalized linear mixed model with a random cow, farm and year effect and the binary outcome of bacteriological cure of IMI during the DP was conducted. In the final model, a significant effect (p < 0.05) on DP cure was seen for the DO season and the category of causative pathogens (categories being: Staphylococcus aureus, non-aureus staphylococci, streptococci, coliforms, ‘other Gram-negative bacteria’, ‘other Gram positive bacteria’, non-bacterial infections and mixed infections), while antibiotic DCT (vs. non-antibiotic DCT) only showed a significant effect in combination with the pathogen categories streptococci and ‘other Gram-positive bacteria’.
One of the main concerns of this publication is to furnish a more rational basis for discussing bioplastics and use fact-based arguments in the public discourse. Furthermore, “Biopolymers – facts and statistics” aims to provide specific, qualified answers easily and quickly for decision-makers in particular from public administration and the industrial sector. Therefore, this publication is made up like a set of rules and standards and largely foregoes textual detail. It offers extensive market-relevant and technical facts presented in graphs and charts, which means that the information is much easier to grasp. The reader can expect comparative market figures for various materials, regions, applications, process routes, agricultural land use, water use or resource consumption, production capacities, geographic distribution, etc.
During machine milking, pathogenic microorganisms can be transmitted from cow to cow through liners. Therefore, in Germany, a spray method for the intermediate disinfection of the milking cluster is often used for prevention. This method of cluster disinfection is easy to perform, requires little time and no extra materials, and the disinfection solution is safe from outside contamination in the spray bottle. Since no data on a systematic efficacy trial are available, the aim of this study was to determine the microbial reduction effect of intermediate disinfection. Therefore, laboratory and field trials were conducted. In both trials, two sprays of 0.85 mL per burst of different disinfectant solutions were sprayed into the contaminated liners. For sampling, a quantitative swabbing method using a modified wet–dry swab (WDS) technique based on DIN 10113-1: 1997-07 was applied. Thus, the effectiveness of disinfectants based on Peracetic Acid, Hydrogen Peroxide and Plasma-Activated Buffered Solution (PABS) was compared. In the laboratory trial, the inner surfaces of liners were contaminated with pure cultures of Escherichia (E.) coli, Staphylococcus (S.) aureus, Streptococcus (Sc.) uberis and Sc. agalactiae. The disinfection of the contaminated liners with the disinfectants resulted in a significant reduction in bacteria with values averaging 1 log for E. coli, 0.7 log for S. aureus, 0.7 log for Sc. uberis and 0.8 log for Sc. agalactiae. The highest reduction was obtained for contamination with E. coli (1.3 log) and Sc. uberis (0.8 log) when PABS was applied and for contamination with S. aureus (1.1 log) and Sc. agalactiae (1 log) when Peracetic Acid Solution (PAS) was used. Treatment with sterile water only led to an average reduction of 0.4 log. In the field trial, after the milking of 575 cows, the liners were disinfected and the total microorganism count from the liner surface was performed. The reduction was measured against an untreated liner within the cluster. Although a reduction in microorganisms was achieved in the field trial, it was not significant. When using PAS, a log reduction of 0.3 was achieved; when using PABS, a log reduction of 0.2 was obtained. The difference between the two disinfection methods was also not significant. Treatment with sterile water only led to a reduction of 0.1 log. The results show that spray disinfection under these circumstances does result in a reduction in the bacteria on the milking liner surface, but for effective disinfection a higher reduction would be preferred.
One of the main concerns of this publication is to furnish a more rational basis for discussing bioplastics and use fact-based arguments in the public discourse. Furthermore, “Biopolymers – facts and statistics” aims to provide specific, qualified answers easily and quickly for decision-makers in particular from public administration and the industrial sector. Therefore, this publication is made up like a set of rules and standards and largely foregoes textual detail. It offers extensive market-relevant and technical facts presented in graphs and charts, which means that the information is much easier to grasp. The reader can expect comparative market figures for various materials, regions, applications, process routes, agricultural land use, water use or resource consumption, production capacities, geographic distribution, etc.
We present a methodology based on mixed-integer nonlinear model predictive control for a real-time building energy management system in application to a single-family house with a combined heat and power (CHP) unit. The developed strategy successfully deals with the switching behavior of the system components as well as minimum admissible operating time constraints by use of a special switch-cost-aware rounding procedure. The quality of the presented solution is evaluated in comparison to the globally optimal dynamic programming method and conventional rule-based control strategy. Based on a real-world scenario, we show that our approach is more than real-time capable while maintaining high correspondence with the globally optimal solution. We achieve an average optimality gap of 2.5% compared to 20% for a conventional control approach, and are faster and more scalable than a dynamic programming approach.
Subclinical mastitis in heifers during early lactation affects udder health, future milk production and, therefore, the risk of premature culling. The aim of this cross-sectional study was to identify pre- and post-partum risk factors associated with a high heifer mastitis rate (HMR), and to find out which period (either pre- or post-partum) contains more risk factors and consequently should be the focus of mastitis control in heifers. A total of 77 herds were included in this study and the potential animal- and farm-related risk factors were recorded during a one-time farm visit. The HMR was provided by the dairy herd improvement test (DHI) as the annual average of the past 11 DHIs. For this study, data were analyzed in two models using generalized linear models. Each model examined the association between possible risk factors and HMR, one including only prepartum risk factors and the other one only post-partum risk factors. One identified pre-partum risk factor was the proportion of udder-healthy cows in the herd. Post-partum risk factors were the type of teat cleaning procedure before milking, teat disinfection, treatment of mastitis in heifers, a body condition score (BCS) of >3.0 in fresh heifers, and the combination of a teat cleaning procedure with a teat disinfectant. The results show the importance of the period shortly after calving for udder health in heifers, as four of the five significant risk factors were identified in this period and three of them were related to the milking process. However, further research with a higher number of herds is needed to minimize individual herd effects.
We present a novel long short-term memory (LSTM) approach for time-series prediction of the sand demand which arises from preparing the sand moulds for the iron casting process of a foundry. With our approach, we contribute to qualify LSTM and its combination with feedback-corrected optimal scheduling for industrial processes.
The sand is produced in an energy intensive mixing process which is controlled by optimal scheduling. The optimal scheduling is solved for a fixed prediction horizon. One major influencing factor is the sand demand, which is highly disturbed, for example due to production interruptions. The causes of production interruptions are in general physically unknown. We assume that information about the future behavior of the sand demand is included in current and past process data. Therefore, we choose LSTM networks for predicting the time-series of the sand demand.
The sand demand prediction is performed by our multi model approach. This approach outperforms the currently used naive estimation, even when predicting far into the future. Our LSTM based prediction approach can forecast the sand demand with a conformity up to 38 % and a mean value accuracy of approximately 99%. Simulating the optimal scheduling with sand demand prediction leads to an improvement in energy savings of approximately 1.1% compared to the naive estimation. The application of our novel approach at the real production plant of a foundry proves the simulation results and verifies the capability of our approach.
The optimization of lubricated sealing systems with respect to the stick-slip effect requires a friction model that describes the complex friction behavior in the lubricated contact area. This paper presents an efficient dynamic friction model based on the Stribeck curve, which allows to investigate the influencing parameters through finite element (FE) simulations. The simulation of a tribometer test using this friction model proofs that the model correlates well with the tribometer test results. It is shown that the system stiffness has a significant influence on the stick-slip tendency of the system.
Although Corynebacterium spp. can be regularly associated with subclinical and clinical mastitis cases in dairy cows, knowledge on their reservoirs in dairy farms is sparse. Therefore, samples were collected at 10 visits with 14 day intervals from bedding material (n = 50), drinking troughs (n = 20), different walking areas (n = 60), cow brushes (n = 8), fly traps (n = 4), the passage to pasture (n = 9) as well as milking liners (n = 80) and milker gloves (n = 20) in one dairy cow farm. Additionally, quarter foremilk samples from all lactating cows (approximately 200) were collected at each visit. All samples underwent microbiological examination and cultured isolates were identified using MALDI-TOF MS. Most Corynebacterium spp. that were cultivated from milk were also isolated from the housing environment and milking-related niches (C. amycolatum, C. confusum, C. stationis, C. variabile, C. xerosis) or from milking-related niches only (C. frankenforstense, C. pilosum, C. suicordis). C. bovis was not cultivated from any environmental niche, while being the dominant species in milk samples. This study demonstrates that many Corynebacterium spp. present in milk samples can also be isolated from the cows’ environment. For C. bovis, the most relevant Corynebacterium species with regard to intramammary infections, it indicates that environmental reservoirs are of little relevance.
We report velocity-dependent internal energy distributions of nitric oxide molecules, NO, scattered off graphene supported on gold to further explore the dynamics of the collision process between NO radicals and graphene. These experiments were performed by directing a molecular beam of NO onto graphene in a surface-velocity map imaging setup, which allowed us to record internal energy distributions of the NO radicals as a function of their velocity. We do not observe bond formation but (1) major contributions from direct inelastic scattering and (2) a smaller trapping–desorption component where some physisorbed NO molecules have residence times on the order of microseconds. This is in agreement with our classical molecular dynamics simulations which also observe a small proportion of two- and multi-bounce collisions events but likewise a small proportion of NO radicals trapped at the surface for the entire length of the molecular dynamics simulations (a few picoseconds). Despite a collision energy of 0.31 eV, which would be sufficient to populate NO(v = 1), we do not detect vibrationally excited nitric oxide.
This paper proposes an extended Petri net formalism as a suitable language for composing optimal scheduling problems of industrial production processes with real and binary decision variables. The proposed approach is modular and scalable, as the overall process dynamics and constraints can be collected by parsing of all atomic elements of the net graph. To conclude, we demonstrate the use of this framework for modeling the moulding sand preparation process of a real foundry plant.
Coaxial Laser wire Direct Energy Deposition (L-DED) promises a direction-independent buildup due to a centric supply of the welding material. To fabricate Functionally Graded Materials (FGMs), a processing head was designed that is capable of supplying two wire materials into the processing zone. This study investigates the direction dependency of welding seams produced by two 1.4718 metal wires with a diameter of 0.8 mm in a coaxial laser setup using three separately controllable single laser beams with a maximum combined laser power of 660 W. The welding wires are supplied simultaneously to the laser spot under an incidence angle of 3.5° to the middle axis of the processing head. The seam geometry is investigated using a confocal laserscanning-microscope. A comparison of the height, width and macroscopic seam geometry reveals the influence of the welding direction on the seam geometry and quality in Laser Double wire Direct Energy Deposition (LD-DED).
A proven method to enhance the mechanical properties of additively manufactured plastic parts is the embedding of continuous fibers. Due to its great flexibility, continuous fiber-reinforced material extrusion allows fiber strands to be deposited along optimized paths. Nevertheless, the fibers have so far been embedded in the parts contour-based or on the basis of regular patterns. The outstanding strength and stiffness properties of the fibers in the longitudinal direction cannot be optimally utilized. Therefore, a method is proposed which allows to embed fibers along the principal stresses into the parts in a load-oriented manner. A G-code is generated from the calculated principal stress trajectories and the part geometry, which also takes into account the specific restrictions of the manufacturing technology used. A distinction is made between fiber paths and the matrix so that the average fiber volume content can be set in a defined way. To determine the mechanical properties, tensile and flexural tests are carried out on specimens consisting of carbon fiber-reinforced polyamide. In order to increase the influence of the principal stress-based fiber orientation, open-hole plates are used for the tensile tests, as this leads to variable stresses across the cross section. In addition, a digital image correlation system is used to determine the deformations during the mechanical tests. It was found that the peak load of the optimized open-hole plates was greater by a factor of 3 and the optimized flexural specimens by a factor of 1.9 than the comparison specimens with unidirectional fiber alignment.
We performed classical molecular dynamics simulations to model the scattering process of nitric oxide, NO, off graphene supported on gold. This is motivated by our desire to probe the energy transfer in collisions with graphene. Since many of these collision systems comprising of graphene and small molecules have been shown to scatter non-reactively, classical molecular dynamics appear to describe such systems sufficiently. We directed thousands of trajectories of NO molecules onto graphene along the surface normal, while varying impact position, but also speed, orientation, and rotational excitation of the nitric oxide, and compare the results with experimental data. While experiment and theory do not match quantitatively, we observe agreement that the relative amount of kineti cenergy lost during the collision increases with increasing initial kinetic energy of the NO. Furthermore, while at higher collision energies, all NO molecules lose some energy, and the vast majority of NO is scattered back, in contrast at low impact energies, the fraction of those nitric oxide molecules that are trapped at the surface increases, and some NO molecules even gain some kinetic energy during the collision process. The collision energy seems to preferentially go into the collective motion of the carbon atoms in the graphene sheet.
As part of the European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT), a webinar on the topic “Mastitis Treatment in Lactation” was held, in which eight mastitis experts from different European countries (Spain, The Netherlands, Estonia, Ireland, Poland, Finland, Germany, and Italy) presented their treatment approaches for clinical mastitis in lactation. The aim of this study was to compare the therapeutic approaches to identify commonalities and differences. In all eight participating countries, the decision to start treatment is usually made by the veterinarians, while the farm personnel are responsible for treatment administration. Antibiotic treatment is then typically administered intramammarily. The treatment duration often depends on the label instructions and is frequently extended if Staphylococcus aureus or Streptococcus uberis is involved. Administering supportive therapy, especially non-steroidal anti-inflammatory drugs (NSAIDs) is an established practice in all countries. Penicillin is the first-choice drug for the treatment of mastitis in an increasing number of countries. The use of critically important antimicrobials (CIAs) such as quinolones and third- and fourth-generation cephalosporins is at a low level in Finland and The Netherlands. In Estonia, Germany, Italy, and Spain, the use of CIAs is declining and is only allowed if milk samples are analyzed in advance following the legal framework. Systems for monitoring antibiotic use are being introduced in more and more countries. This exchange of different views will help the European countries to move towards a common high standard of antimicrobial stewardship in veterinary medicine.
Severe mastitis can lead to considerable disturbances in the cows’ general condition and even to septicemia and death. The aim of this cross-sectional study was to identify factors associated with the severity of the clinical expression of mastitis. Streptococcus (Str.) uberis (29.9%) was the most frequently isolated pathogen, followed by coliform bacteria (22.3%). The majority of all mastitis cases (n = 854) in this study were either mild or moderate, but 21.1% were severe. It can be deduced that the combination of coliform pathogens and increasing pathogen shedding of these showed associations with severe mastitis. Furthermore, animal-related factors associated with severe disease progression were stages of lactation, and previous diseases in the period prior to the mastitis episode. Cows in early lactation had more severe mastitis. Ketosis and uterine diseases in temporal relation to the mastitis were associated with more severe mastitis in the diseased cows. Hypocalcemia was significantly associated with milder mastitis. As another factor, treatment with corticosteroids within two weeks before mastitis was associated with higher severity of mastitis. Knowledge of these risk factors may provide the basis for randomized controlled trials of the exact influence of these on the severity of mastitis.
Continuous Fiber-Reinforced Material Extrusion with Hybrid Composites of Carbon and Aramid Fibers
(2022)
An existing challenge in the use of continuous fiber reinforcements in additively manufactured parts is the limited availability of suitable fiber materials. This leads to a reduced adaptability of the mechanical properties to the load case. The increased design freedom of additive manufacturing allows the flexible deposition of fiber strands at defined positions, so that even different fiber materials can be easily combined in a printed part. In this work, therefore, an approach is taken to combine carbon and aramid fibers in printed composite parts to investigate their effects on mechanical properties. For this purpose, tensile, flexural and impact tests were performed on printed composite parts made of carbon and aramid fibers in a nylon matrix with five different mixing ratios. The tests showed that the use of hybrid composites for additive manufacturing is a reasonable approach to adapt the mechanical properties to the loading case at hand. The experiments showed that increasing the aramid fiber content resulted in an increase in impact strength, but a decrease in tensile and flexural strength and a decrease in stiffness. Microstructural investigations of the fracture surfaces showed that debonding and delamination were the main failure mechanisms. Finally, Rule of Hybrid Mixture equations were applied to predict the mechanical properties at different mixture ratios. This resulted in predicted values that differed from the experimentally determined values by an average of 5.6%.
Corynebacterium spp. are frequently detected in bovine quarter milk samples, yet their impact on udder health has not been determined completely. In this longitudinal study, we collected quarter milk samples from a dairy herd of approximately 200 cows, ten times at 14 d intervals. Bacteriologically, Catalase-positive and Gram-positive rods were detected in 22.7% of the samples. For further species diagnosis, colonies were analyzed by MALDITOF MS. Corynebacterium bovis, C. amycolatum, C. xerosis and 10 other Corynebacterium spp. were detected. The three aforementioned species accounted for 88.4%, 8.65% and 0.94% of all cultured Corynebacterium spp., respectively. For further evaluation of infection dynamics, the following three infection definitions were applied: A (2/3 consecutive samples positive for the same species), B (≥1000 cfu/mL in one sample), C (isolated from a clinical mastitis case). Infections according to definition B occurred most frequently and clinical mastitis with Corynebacterium spp. occurred once during sampling. Life tables were used to determine the duration of infection. According to infection definition A, infection durations of 111 d and 98 d were obtained for C. bovis and C. amycolatum, respectively. Exemplarily, longer lasting infections were examined for their strain diversity by RAPD PCR. A low strain diversity was found in the individual quarters that indicates a longer colonization of the udder parenchyma by C. bovis and C. amycolatum.
We describe an experimental approach to the determination of the nascent internal state distribution of gas-phase products of a gas–liquid interfacial reaction. The system chosen for study is O(³P) atoms with the surface of liquid deuterated squalane, a partially branched long-chain saturated hydrocarbon, C₃₀D₆₂. The nascent OD products are detected by laser-induced fluorescence. Both OD (v′=0) and (v′=1) were observed in significant yield. The rotational distributions in both vibrational levels are essentially the same, and are characteristic of a Boltzmann distribution at a temperature close to that of the liquid surface. This contrasts with the distributions in the corresponding homogeneous gas-phase reactions. We propose a preliminary interpretation in terms of a dominant trapping-desorption mechanism, in which the OD molecules are retained at the surface sufficiently long to cause rotational equilibration but not complete vibrational relaxation. The significant yield of vibrationally excited OD also suggests that the surface is not composed entirely of –CD₃ endgroups, but that secondary and/or tertiary units along the backbone are exposed.