Refine
Year of publication
Document Type
- Working Paper (66)
- Conference Proceeding (65)
- Article (54)
- Bachelor Thesis (46)
- Report (34)
- Master's Thesis (23)
- Book (19)
- Study Thesis (10)
- Course Material (9)
- Part of a Book (6)
- Preprint (5)
- Lecture (4)
- Doctoral Thesis (2)
- Other (2)
Has Fulltext
- yes (345)
Is part of the Bibliography
- no (345)
Keywords
- Digitalisierung (16)
- E-Learning (15)
- Korruption (12)
- Agilität <Management> (11)
- Führung (11)
- Grader (11)
- Herbarium (11)
- Programmierung (11)
- Autobewerter (10)
- Computerunterstütztes Lernen (10)
Institute
- Fakultät IV - Wirtschaft und Informatik (345) (remove)
In this paper we describe methods to approximate functions and differential operators on adaptive sparse (dyadic) grids. We distinguish between several representations of a function on the sparse grid and we describe how finite difference (FD) operators can be applied to these representations. For general variable coefficient equations on sparse grids, genuine finite element (FE) discretizations are not feasible and FD operators allow an easier operator evaluation than the adapted FE operators. However, the structure of the FD operators is complex. With the aim to construct an efficient multigrid procedure, we analyze the structure of the discrete Laplacian in its hierarchical representation and show the relation between the full and the sparse grid case. The rather complex relations, that are expressed by scaling matrices for each separate coordinate direction, make us doubt about the possibility of constructing efficient preconditioners that show spectral equivalence. Hence, we question the possibility of constructing a natural multigrid algorithm with optimal O(N) efficiency. We conjecture that for the efficient solution of a general class of adaptive grid problems it is better to accept an additional condition for the dyadic grids (condition L) and to apply adaptive hp-discretization.
Bluetooth ist ein weit verbreitetes drahtloses Übertragungsprotokoll, das in vielen mobilen Geräten wie bspw. Tablets, Kopfhörer oder Smartwatches verwendet wird. Bluetooth-fähige Geräte senden mehrmals pro Minute öffentliche Advertisements, die u.a. die einzigartige MAC-Adresse des Gerätes beinhalten. Das Mitschneiden dieser Advertisements mittels Bluetooth-Logger ermöglicht es, Bewegungen der Geräte zu analysieren und lassen somit Rückschlüsse auf die Bewegungen der Besitzenden zu.
Zum Schutz der Privatsphäre werden seit 2014 zufällig erzeugte MAC-Adressen in Advertisements verwendet. Eine sog. randomisierte MAC-Adresse bleibt durchschnittlich 15 Minuten lang gültig und wird dann durch eine neue zufällige Adresse ersetzt. Der Aufenthalt eines Geräts zu einem späteren Zeitpunkt kann nicht bestimmt werden. Dennoch kann der Wechsel eines Geräts von einem Bluetooth-Logger zu einem anderen innerhalb dieser 15 Minuten erkannt und somit eine Bewegung des Gerätes abgeleitet werden.
Durch Apps der Kontaktpersonennachverfolgung wie die Corona-Warn-App (CWA) senden auch vermeintlich inaktive Smartphones Bluetooth-Advertisements. Mit etwa einem Viertel der Aufzeichnungen unterstützt die CWA die Auswertungen dieser experimentellen Arbeit.
Um die praktische Anwendbarkeit zu demonstrieren, wurde der Erlebniszoo Hannover als Testgelände genutzt. Die Auswertung der über sieben Wochen gesammelten Daten ermöglichte die Analyse von Stoßzeiten, stark besuchten Orten und Besucherströmen.
The paper presents a comprehensive model of a banking system that integrates network effects, bankruptcy costs, fire sales, and cross-holdings. For the integrated financial market we prove the existence of a price-payment equilibrium and design an algorithm for the computation of the greatest and the least equilibrium. The number of defaults corresponding to the greatest price-payment equilibrium is analyzed in several comparative case studies. These illustrate the individual and joint impact of interbank liabilities, bankruptcy costs, fire sales and cross-holdings on systemic risk. We study policy implications and regulatory instruments, including central bank guarantees and quantitative easing, the significance of last wills of financial institutions, and capital requirements.
Background:
Many patients with cardiovascular disease also show a high comorbidity of mental disorders, especially such as anxiety and depression. This is, in turn, associated with a decrease in the quality of life. Psychocardiological treatment options are currently limited. Hence, there is a need for novel and accessible psychological help. Recently, we demonstrated that a brief face-to-face metacognitive therapy (MCT) based intervention is promising in treating anxiety and depression. Here, we aim to translate the face-to-face approach into digital application and explore the feasibility of this approach.
Methods:
We translated a validated brief psychocardiological intervention into a novel non-blended web app. The data of 18 patients suffering from various cardiac conditions but without diagnosed mental illness were analyzed after using the web app over a two-week period in a feasibility trial. The aim was whether a nonblended web app based MCT approach is feasible in the group of cardiovascular patients with cardiovascular disease.
Results:
Overall, patients were able to use the web app and rated it as satisfactory and beneficial. In addition, there was first indication that using the app improved the cardiac patients’ subjectively perceived health and reduced their anxiety. Therefore, the approach seems feasible for a future randomized controlled trial.
Conclusion:
Applying a metacognitive-based brief intervention via a nonblended web app seems to show good acceptance and feasibility in a small target group of patients with CVD. Future studies should further develop, improve and validate digital psychotherapy approaches, especially in patient groups with a lack of access to standard psychotherapeutic care.
Die Arbeit untersucht die Anwendung von maschinellem Lernen zur Erkennung von Aktivitäten von Schiffen anhand von AIS-Signalen. Das Automatic Identification System (AIS) wird von Schiffen genutzt, um Informationen über ihren Status in regelmäßigen Intervallen zu übertragen. Auf Basis der Daten wurden mithilfe von Machine Learning-Algorithmen aus der Gruppe der überwachten Klassifikationsalgorithmen Modelle gelernt, die in der Lage sind zu erkennen, welcher Aktivität ein Schiff zu einem Zeitpunkt nachgeht.
Da das erfolgreiche Lernen eines Modells von einer sorgfältigen Datenvorbereitung abhängt, wurden verschiedene Verfahren zur Datenvorbereitung verwendet. Anschließend wurden verschiedene Algorithmen eingesetzt, darunter der Random Forest und k-NN, um Modelle zu lernen.
Die Ergebnisse zeigen, dass die Aktivitäten mit einer Genauigkeit von bis zu 99% erkannt werden konnten, wenn in der Datenvorbereitung geeignete Verfahren gewählt wurden.
In unseren Studien haben sich Personenfaktoren im Vergleich zu Situationsfaktoren durchgängig als relevanter für die Entscheidung eines Menschen für oder gegen Korruption erwiesen. Bei der Entscheidung eines Menschen für oder gegen Korruption wirken die verschiedenen Personenfaktorklassen unterschiedlich stark. Die Personenfaktorklassen Persönlichkeit, Werte und Einstellungen beeinflussen die Entscheidung für oder gegen korruptes Handeln substanziell. Hingegen hat die Personenfaktorklasse implizite Motive entgegen ursprünglicher Erwartungen keinen substanziellen Einfluss. Auch soziodemografische Merkmale wie beispielsweise Alter oder Geschlecht haben keine substanzielle Wirkung auf Entscheidungen für oder gegen korruptes Handeln. Das Alter oder das Geschlecht ist nur indirekt wirksam, wenn es mit anderen Personenfaktoren verknüpft ist. So kann sich beispielsweise die Offenheit mit dem Alter verändern. Kausal für korrupte Handlungen sind die jeweiligen Personenfaktoren und nicht die soziodemografischen Merkmale. Die Personenfaktoren sind empirisch vergleichsweise gut abgesichert. Bei den Situationsfaktoren gibt es noch zahlreiche Unschärfen, die sich letztlich auf Basis des derzeitigen Kenntnisstands nicht zufriedenstellend auflösen lassen. Wie eine konkrete Situation von einem bestimmten Menschen wahrgenommen und verarbeitet wird, hängt von dessen Personenfaktoren und nicht nur von äußeren Situationsfaktoren ab. Die von uns vorgestellte Theorie kann eine Basis für die weitere Forschung zu Korruption sein.
In the last years generative models have gained large public attention due to their high level of quality in generated images. In short, generative models learn a distribution from a finite number of samples and are able then to generate infinite other samples. This can be applied to image data. In the past generative models have not been able to generate realistic images, but nowadays the results are almost indistinguishable from real images.
This work provides a comparative study of three generative models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN) and Diffusion Models (DM). The goal is not to provide a definitive ranking indicating which one of them is the best, but to qualitatively and where possible quantitively decide which model is good with respect to a given criterion. Such criteria include realism, generalization and diversity, sampling, training difficulty, parameter efficiency, interpolating and inpainting capabilities, semantic editing as well as implementation difficulty. After a brief introduction of how each model works on the inside, they are compared against each other. The provided images help to see the differences among the models with respect to each criterion.
To give a short outlook on the results of the comparison of the three models, DMs generate most realistic images. They seem to generalize best and have a high variation among the generated images. However, they are based on an iterative process, which makes them the slowest of the three models in terms of sample generation time. On the other hand, GANs and VAEs generate their samples using one single forward-pass. The images generated by GANs are comparable to the DM and the images from VAEs are blurry, which makes them less desirable in comparison to GANs or DMs. However, both the VAE and the GAN, stand out from the DMs with respect to the interpolations and semantic editing, as they have a latent space, which makes space-walks possible and the changes are not as chaotic as in the case of DMs. Furthermore, concept-vectors can be found, which transform a given image along a given feature while leaving other features and structures mostly unchanged, which is difficult to archive with DMs.
There are many aspects of code quality, some of which are difficult to capture or to measure. Despite the importance of software quality, there is a lack of commonly accepted measures or indicators for code quality that can be linked to quality attributes. We investigate software developers’ perceptions of source code quality and the practices they recommend to achieve these qualities. We analyze data from semi-structured interviews with 34 professional software developers, programming teachers and students from Europe and the U.S. For the interviews, participants were asked to bring code examples to exemplify what they consider good and bad code, respectively. Readability and structure were used most commonly as defining properties for quality code. Together with documentation, they were also suggested as the most common target properties for quality improvement. When discussing actual code, developers focused on structure, comprehensibility and readability as quality properties. When analyzing relationships between properties, the most commonly talked about target property was comprehensibility. Documentation, structure and readability were named most frequently as source properties to achieve good comprehensibility. Some of the most important source code properties contributing to code quality as perceived by developers lack clear definitions and are difficult to capture. More research is therefore necessary to measure the structure, comprehensibility and readability of code in ways that matter for developers and to relate these measures of code structure, comprehensibility and readability to common software quality attributes.
The digital transformation with its new technologies and customer expectation has a significant effect on the customer channels in the insurance industry. The objective of this study is the identification of enabling and hindering factors for the adoption of online claim notification services that are an important part of the customer experience in insurance. For this purpose, we conducted a quantitative cross-sectional survey based on the exemplary scenario of car insurance in Germany and analyzed the data via structural equation modeling (SEM). The findings show that, besides classical technology acceptance factors such as perceived usefulness and ease of use, digital mindset and status quo behavior play a role: acceptance of digital innovations, lacking endurance as well as lacking frustration tolerance with the status quo lead to a higher intention for use. Moreover, the results are strongly moderated by the severity of the damage event—an insurance-specific factor that is sparsely considered so far. The latter discovery implies that customers prefer a communication channel choice based on the individual circumstances of the claim.
During the Corona-Pandemic, information (e.g. from the analysis of balance sheets and payment behavior) traditionally used for corporate credit risk analysis became less valuable because it represents only past circumstances. Therefore, the use of currently published data from social media platforms, which have shown to contain valuable information regarding the financial stability of companies, should be evaluated. In this data e. g. additional information from disappointed employees or customers can be present. In order to analyze in how far this data can improve the information base for corporate credit risk assessment, Twitter data regarding the ten greatest insolvencies of German companies in 2020 and solvent counterparts is analyzed in this paper. The results from t-tests show, that sentiment before the insolvencies is significantly worse than in the comparison group which is in alignment with previously conducted research endeavors. Furthermore, companies can be classified as prospectively solvent or insolvent with up to 70% accuracy by applying the k-nearest-neighbor algorithm to monthly aggregated sentiment scores. No significant differences in the number of Tweets for both groups can be proven, which is in contrast to findings from studies which were conducted before the Corona-Pandemic. The results can be utilized by practitioners and scientists in order to improve decision support systems in the domain of corporate credit risk analysis. From a scientific point of view, the results show, that the information asymmetry between lenders and borrowers in credit relationships, which are principals and agents according to the principal-agent-theory, can be reduced based on user generated content from social media platforms. In future studies, it should be evaluated in how far the data can be integrated in established processes for credit decision making. Furthermore, additional social media platforms as well as samples of companies should be analyzed. Lastly, the authenticity of user generated contend should be taken into account in order to ensure, that credit decisions rely on truthful information only.
Unternehmen, die sich ernsthaft mit Nachhaltigkeit beschäftigen, müssen den Nachweis erbringen, dass sie positive Effekte für die Gesellschaft erzielen. Damit ist eine ganzheitliche Wirkungsmessung unabdingbar. Sozialunternehmen sollten als Vorbild für eine solche Wirkungsmessung dienen. Eine wissenschaftliche Studie auf Basis der sog. „Ergebnispyramide“ kommt jedoch zu dem Schluss, dass selbst diese ihre Wirkung bisher kaum ganzheitlich messen.
In this paper we describe the selection of a modern build automation tool for an industry research partner of ours, namely an insurance company. Build automation has become increasingly important over the years. Today, build automation became one of the central concepts in topics such as cloud native development based on microservices and DevOps. Since more and more products for build automation have entered the market and existing tools have changed their functional scope, there is nowadays a large number of tools on the market that differ greatly in their functional scope. Based on requirements from our partner company, a build server analysis was conducted. This paper presents our analysis requirements, a detailed look at one of the examined tools and a summarizes our comparison of all three tools from our final comparison round.
Music streaming platforms offer music listeners an overwhelming choice of music. Therefore, users of streaming platforms need the support of music recommendation systems to find music that suits their personal taste. Currently, a new class of recommender systems based on knowledge graph embeddings promises to improve the quality of recommendations, in particular to provide diverse and novel recommendations. This paper investigates how knowledge graph embeddings can improve music recommendations. First, it is shown how a collaborative knowledge graph can be derived from open music data sources. Based on this knowledge graph, the music recommender system EARS (knowledge graph Embedding-based Artist Recommender System) is presented in detail, with particular emphasis on recommendation diversity and explainability. Finally, a comprehensive evaluation with real-world data is conducted, comparing of different embeddings and investigating the influence of different types of knowledge.
Die Angriffserkennung ist ein wesentlicher Bestandteil, Cyberangriffe zu verhindern und abzumildern. Dazu werden Daten aus verschiedenen Quellen gesammelt und auf Einbruchsspuren durchsucht. Die heutzutage produzierten Datenmengen sind ein wesentliches Problem für die Angriffserkennung. Besonders bei komplexen Cyberangriffen, die über einen längeren Zeitraum stattfinden, wächst die zu durchsuchende Datenmenge stark an und erschwert das Finden und Kombinieren der einzelnen Angriffsschritte.
Eine mögliche Lösung, um dem Problem entgegenzuwirken, ist die Reduktion der Datenmenge. Die Datenreduktion versucht, Daten herauszufiltern, die aus Sicht der Angriffserkennung irrelevant sind. Diese Ansätze werden unter dem Begriff Reduktionstechniken zusammengefasst. In dieser Arbeit werden Reduktionstechniken aus der Wissenschaft untersucht und auf Benchmark Datensätzen angewendet, um ihre Nutzbarkeit zu evaluieren. Dabei wird der Frage nachgegangen, ob die Reduktionstechniken in der Lage sind, irrelevante Daten ausfindig zu machen und zu reduzieren, ohne dass eine Beeinträchtigung der Angriffserkennung stattfindet. Die Evaluation der Angriffserkennung erfolgt durch ThreaTrace, welches eine Graph Neural Network basierte Methode ist.
Die Evaluierung zeigt, dass mehrere Reduktionstechniken die Datenmenge wesentlich reduzieren können, ohne die Angriffserkennung zu beeinträchtigen. Bei drei Techniken führt der Einsatz zu keinen nennenswerten Veränderungen der Erkennungsraten. Dabei wurden Reduktionsraten von bis zu 30 % erreicht. Bei der Anwendung einer Reduktionstechnik stieg die Erkennungsleistung sogar um 8 %. Lediglich bei zwei Techniken führt der Einsatz zum drastischen Absinken der Erkennungsrate.
Insgesamt zeigt die Arbeit, dass eine Datenreduktion angewandt werden kann, ohne die Angriffserkennung zu beeinträchtigen. In besonderen Fällen kann eine Datenreduktion, die Erkennungsleistung sogar verbessern. Allerdings ist der erfolgreiche Einsatz der Reduktionstechniken abhängig vom verwendeten Datensatz und der verwendeten Methode der Angriffserkennung.
The transfer of historically grown monolithic software architectures into modern service-oriented architectures creates a lot of loose coupling points. This can lead to an unforeseen system behavior and can significantly impede those continuous modernization processes, since it is not clear where bottlenecks in a system arise. It is therefore necessary to monitor such modernization processes with an adaptive monitoring concept to be able to correctly record and interpret unpredictable system dynamics. This contribution presents a generic QoS measurement framework for service-based systems. The framework consists of an XML-based specification for the measurement to be performed – the Information Model (IM) – and the QoS System, which provides an execution platform for the IM. The framework will be applied to a standard business process of the German insurance industry, and the concepts of the IM and their mapping to artifacts of the QoS System will be presented. Furtherm ore, design and implementation of the QoS System’s parser and generator module and the generated artifacts are explained in detail, e.g., event model, agents, measurement module and analyzer module.
Der Bachelor-Studiengang Mediendesigninformatik der Hochschule Hannover ist ein Informatikstudiengang mit dem speziellen Anwendungsgebiet Mediendesign. In Abgrenzung von Studiengängen der Medieninformatik liegt der Anwendungsfokus auf der kreativen Gestaltung etwa von 3D-Modellierungen, Animationen und Computerspielen. Absolvent*innen des Studiengangs sollen an der Schnittstelle zwischen Informatik und Mediendesign agieren können, zum Beispiel bei der Erstellung von Benutzungsschnittstellen und VR/AR-Anwendungen. Der Artikel stellt das Curriculum des interdisziplinären Studiengangs vor und reflektiert nach dem Abschluss der ersten beiden Studierendenkohorten die Erfahrungen, indem die ursprünglichen Ziele den Zahlen der Hochschulstatistik und den Ergebnissen zweier Studierendenbefragungen gegenübergestellt werden.
Even for the more traditional insurance industry, the Microservices Architecture (MSA) style plays an increasingly important role in provisioning insurance services. However, insurance businesses must operate legacy applications, enterprise software, and service-based applications in parallel for a more extended transition period. The ultimate goal of our ongoing research is to design a microservice reference architecture in cooperation with our industry partners from the insurance domain that provides an approach for the integration of applications from different architecture paradigms. In Germany, individual insurance services are classified as part of the critical infrastructure. Therefore, German insurance companies must comply with the Federal Office for Information Security requirements, which the Federal Supervisory Authority enforces. Additionally, insurance companies must comply with relevant laws, regulations, and standards as part of the business’s compliance requirements. Note: Since Germany is seen as relatively ’tough’ with respect to privacy and security demands, fullfilling those demands might well be suitable (if not even ’over-achieving’) for insurances in other countries as well. The question raises thus, of how insurance services can be secured in an application landscape shaped by the MSA style to comply with the architectural and security requirements depicted above. This article highlights the specific regulations, laws, and standards the insurance industry must comply with. We present initial architectural patterns to address authentication and authorization in an MSA tailored to the requirements of our insurance industry partners.
Cloud computing has become well established in private and public sector projects over the past few years, opening ever new opportunities for research and development, but also for education. One of these opportunities presents itself in the form of dynamically deployable, virtual lab environments, granting educational institutions increased flexibility with the allocation of their computing resources. These fully sandboxed labs provide students with their own, internal network and full access to all machines within, granting them the flexibility necessary to gather hands-on experience with building heterogeneous microservice architectures. The eduDScloud provides a private cloud infrastructure to which labs like the microservice lab outlined in this paper can be flexibly deployed at a moment’s notice.