Refine
Year of publication
- 2018 (7) (remove)
Document Type
- Conference Proceeding (7) (remove)
Keywords
- Abbreviations (1)
- Abkürzung (1)
- Acronyms (1)
- Akronym (1)
- Ambiguität (1)
- Autobewerter (1)
- Bibliothek (1)
- Bildersuchmaschine (1)
- Biokunststoff (1)
- Computerunterstütztes Lernen (1)
- Disambiguation (1)
- E-Assessment (1)
- E-Learning (1)
- Grader (1)
- Image Retrieval (1)
- Informationskompetenz (1)
- Informationsvermittlung (1)
- Lernmanagementsystem (1)
- Open Access (1)
- Programmierung (1)
- Schreibberatung (1)
- Schreibwerkstatt (1)
- Scientific image search (1)
- Systems Librarian, Data Librarian, Job advertisement analysis, Job profiles, New competencies (1)
- Text annotation (1)
- Umweltbilanz (1)
- Variabilität (1)
- Wikipedia categories (1)
- Wissenschaftliches Arbeiten (1)
- attributional LCA (1)
- bio-based plastics (1)
- consequential LCA (1)
- eco-design (1)
- individuelle Programmieraufgabe (1)
- life-cycle-assessment (1)
- Übung <Hochschule> (1)
Ein Schnittstellen-Datenmodell der Variabilität in automatisch bewerteten Programmieraufgaben
(2018)
Automatisch bewertete, variable Programmieraufgaben stellen besondere Schnittstellenanforderungen an Autobewerter (Grader) und Lernmanagementsysteme (LMS). Um Wiederverwendung von Aufgaben über Systemgrenzen hinweg zu begünstigen, schlagen wir vor, Aufgabenschablonen durch eine von allen beteiligten Systemen genutzte Middleware zu instanziieren und dabei Variabilitätsinformationen in einem Schnittstellen-Datenmodell zu transportieren. Wir stellen ein solches Datenmodell vor, welches für die Grader-unabhängige Kommunikation mit LMS ausgelegt ist und beispielhaft im Autobewerter Graja implementiert wurde. Zudem wird eine Dialogkomponente für die manuelle Werteauswahl vorgestellt, die auch bei großen Wertemengen effizient und Grader-unabhängig einsetzbar ist. Die Eignung des Dialogs und des Datenmodells wird anhand eines typischen Bewertungsszenarios diskutiert.
Beitrag zum Workshop "Informationskompetenz im Norden" am 01.02.2018 im Bibliotheks- und Informationssytem der Carl von Ossietzky Universität Oldenburg.
Es geht zunächst darum, welche Ansätze und Projekte die Schreibwerkstatt verfolgt, um Informations- & Schreibprozesse an der Hochschule Hannover zu fördern.
Da es gemeinsame Ziele und Zielgruppen von sowie inhaltliche Überschneidungen zwischen Bibliothek und Schreibwerkstatt gibt, werden Kooperationsbeispiele und Vorteile der Zusammenarbeit vorgestellt.
Against the background of climate change and finite fossil resources, bio-based plastics have been in the focus of research for the last decade and were identified as a promising alternative to fossil-based plastics. Now, with an evolving bio-based plastic market and application range, the environmental advantages of bio-based plastic have come to the fore and identified as crucial by different stakeholders. While the majority of assessments for bio-based plastics are carried out based on attributional life cycle assessment, there have been only few consequential studies done in this area. Also, the application of eco-design strategies has not been in the focus for the bio-based products due to the prevailing misconceptions of renewable materials (as feedstock for bio-based plastics) considered in itself as an ‘eco-design strategy’. In this paper, we discuss the life cycle assessment as well as eco-design strategies of a bio-based product taking attributional as well as consequential approaches into account.
NOA is a search engine for scientific images from open access publications based on full text indexing of all text referring to the images and filtering for disciplines and image type. Images will be annotated with Wikipedia categories for better discoverability and for uploading to WikiCommons. Currently we have indexed approximately 2,7 Million images from over 710 000 scientific papers from all fields of science.
This paper deals with new job profiles in libraries, mainly systems librarians (German: Systembibliothekare), IT librarians (German: IT-Bibliothekare) and data librarians (German: Datenbibliothekare). It investigates the vacancies and requirements of these positions in the German-speaking countries by analyzing one hundred and fifty published job advertisements of OpenBiblioJobs between 2012-2016. In addition, the distribution of positions, institutional bearers, different job titles as well as time limits, scope of work and remuneration of the positions are evaluated. The analysis of the remuneration in the public sector in Germany also provides information on demands for a bachelor's or master's degree.
The average annual increase in job vacancies between 2012 and 2016 is 14.19%, confirming the need and necessity of these professional library profiles.
The higher remuneration of the positions in data management, in comparison to the systems librarian, proves the prerequisite of the master's degree and thus indicates a desideratum due to missing or few master's degree courses. Accordingly, the range of bachelor's degree courses (or IT-oriented major areas of study with optional compulsory modules in existing bachelor's degree courses) for systems and IT librarians must be further expanded. An alternative could also be modular education programs for librarians and information scientists with professional experience, as it is already the case for music librarians.
The reuse of scientific raw data is a key demand of Open Science. In the project NOA we foster reuse of scientific images by collecting and uploading them to Wikimedia Commons. In this paper we present a text-based annotation method that proposes Wikipedia categories for open access images. The assigned categories can be used for image retrieval or to upload images to Wikimedia Commons. The annotation basically consists of two phases: extracting salient keywords and mapping these keywords to categories. The results are evaluated on a small record of open access images that were manually annotated.
Scientific papers from all disciplines contain many abbreviations and acronyms. In many cases these acronyms are ambiguous. We present a method to choose the contextual correct definition of an acronym that does not require training for each acronym and thus can be applied to a large number of different acronyms with only few instances. We constructed a set of 19,954 examples of 4,365 ambiguous acronyms from image captions in scientific papers along with their contextually correct definition from different domains. We learn word embeddings for all words in the corpus and compare the averaged context vector of the words in the expansion of an acronym with the weighted average vector of the words in the context of the acronym. We show that this method clearly outperforms (classical) cosine similarity. Furthermore, we show that word embeddings learned from a 1 billion word corpus of scientific exts outperform word embeddings learned from much larger general corpora.