Refine
Document Type
- Conference Proceeding (6)
- Article (1)
Keywords
- Complex Event Processing (3)
- Semantic Web (3)
- Agent <Informatik> (2)
- Blackboard Pattern (1)
- C-SPARQL (1)
- CQL (1)
- Context Awareness (1)
- Crowdshipping (1)
- Datenstrom (1)
- Decision Support (1)
- E-Learning (1)
- Eilzustellung (1)
- Empfehlungssystem (1)
- Kontextbezogenes System (1)
- Paket (1)
- RFID (1)
- Recommender System (1)
- Schwarmintelligenz (1)
- Semantic Web Technologies (1)
- Situation Awareness (1)
- Smart Buildings (1)
- Swarm Intelligence (1)
- agents (1)
- data stream processing (1)
- e-learning (1)
- ontology (1)
- semantic knowledge (1)
- semantic web application (1)
In huge warehouses or stockrooms, it is often very difficult to find a certain item, because it has been misplaced and is therefore not at its assumed position. This position paper presents an approach on how to coordinate mobile RFID agents using a blackboard architecture based on Complex Event Processing.
In recent years, multiple efforts for reducing energy usage have been proposed. Especially buildings offer high potentials for energy savings. In this paper, we present a novel approach for intelligent energy control that combines a simple infrastructure using low cost sensors with the reasoning capabilities of Complex Event Processing. The key issues of the approach are a sophisticated semantic domain model and a multi-staged event processing architecture leading to an intelligent, situation-aware energy management system.
The Gravitational Search Algorithm is a swarm-based optimization metaheuristic that has been successfully applied to many problems. However, to date little analytical work has been done on this topic.
This paper performs a mathematical analysis of the formulae underlying the Gravitational Search Algorithm. From this analysis, it derives key properties of the algorithm's expected behavior and recommendations for parameter selection. It then confirms through empirical examination that these recommendations are sound.
In parcel delivery, the “last mile” from the parcel hub to the customer is costly, especially for time-sensitive delivery tasks that have to be completed within hours after arrival. Recently, crowdshipping has attracted increased attention as a new alternative to traditional delivery modes. In crowdshipping, private citizens (“the crowd”) perform short detours in their daily lives to contribute to parcel delivery in exchange for small incentives. However, achieving desirable crowd behavior is challenging as the crowd is highly dynamic and consists of autonomous, self-interested individuals. Leveraging crowdshipping for time-sensitive deliveries remains an open challenge. In this paper, we present an agent-based approach to on-time parcel delivery with crowds. Our system performs data stream processing on the couriers’ smartphone sensor data to predict delivery delays. Whenever a delay is predicted, the system attempts to forge an agreement for transferring the parcel from the current deliverer to a more promising courier nearby. Our experiments show that through accurate delay predictions and purposeful task transfers many delays can be prevented that would occur without our approach.
Nowadays, smartphones and sensor devices can provide a variety of information about a user’s current situation. So far, many recommender systems neglect this kind of information and thus cannot provide situationspecific recommendations. Situation-aware recommender systems adapt to changes in the user’s environment and therefore are able to offer recommendations that are more appropriate for the current situation. In this paper, we present a software architecture that enables situation awareness for arbitrary recommendation techniques. The proposed system considers both (semi-)static user profiles and volatile situational knowledge to obtain meaningful recommendations. Furthermore, the implementation of the architecture in a museum of natural history is presented, which uses Complex Event Processing to achieve situation awareness.
In this article, we present the software architecture of a new generation of advisory systems using Intelligent Agent and Semantic Web technologies. Multi-agent systems provide a well-suited paradigm to implement negotiation processes in a consultancy situation. Software agents act as clients and advisors, using their knowledge to assist human users. In the presented architecture, the domain knowledge is modeled semantically by means of XML-based ontology languages such as OWL. Using an inference engine, the agents reason, based on their knowledge to make decisions or proposals. The agent knowledge consists of different types of data: on the one hand, private data, which has to be protected against unauthorized access; and on the other hand, publicly accessible knowledge spread over different Web sites. As in a real consultancy, an agent only reveals sensitive private data, if they are indispensable for finding a solution. In addition, depending on the actual consultancy situation, each agent dynamically expands its knowledge base by accessing OWL knowledge sources from the Internet. Due to the standardization of OWL, knowledge models easily can be shared and accessed via the Internet. The usefulness of our approach is proved by the implementation of an advisory system in the Semantic E-learning Agent (SEA) project, whose objective is to develop virtual student advisers that render support to university students in order to successfully organize and perform their studies.
Complex Event Processing (CEP) has been established as a well-suited software technology for processing high-frequent data streams. However, intelligent stream based systems must integrate stream data with semantical background knowledge. In this work, we investigate different approaches on integrating stream data and semantic domain knowledge. In particular, we discuss from a software engineering per- spective two different architectures: an approach adding an ontology access mechanism to a common Continuous Query Language (CQL) is compared with C-SPARQL, a streaming extension of the RDF query language SPARQL.