Refine
Document Type
- Report (8)
- Conference Proceeding (3)
- Article (1)
- Bachelor Thesis (1)
- Master's Thesis (1)
- Working Paper (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- E-Learning (15) (remove)
Institute
- Fakultät IV - Wirtschaft und Informatik (15) (remove)
In this article, we present the software architecture of a new generation of advisory systems using Intelligent Agent and Semantic Web technologies. Multi-agent systems provide a well-suited paradigm to implement negotiation processes in a consultancy situation. Software agents act as clients and advisors, using their knowledge to assist human users. In the presented architecture, the domain knowledge is modeled semantically by means of XML-based ontology languages such as OWL. Using an inference engine, the agents reason, based on their knowledge to make decisions or proposals. The agent knowledge consists of different types of data: on the one hand, private data, which has to be protected against unauthorized access; and on the other hand, publicly accessible knowledge spread over different Web sites. As in a real consultancy, an agent only reveals sensitive private data, if they are indispensable for finding a solution. In addition, depending on the actual consultancy situation, each agent dynamically expands its knowledge base by accessing OWL knowledge sources from the Internet. Due to the standardization of OWL, knowledge models easily can be shared and accessed via the Internet. The usefulness of our approach is proved by the implementation of an advisory system in the Semantic E-learning Agent (SEA) project, whose objective is to develop virtual student advisers that render support to university students in order to successfully organize and perform their studies.
Wir führen schrittweise in den Einsatz einer Java-Bibliothek ein, um Variationspunkte und deren Wertemengen in automatisiert bewerteten Programmieraufgaben zu spezifizieren und als XML-Datei zu exportieren. Solche Variationspunkte kommen bei individualisierbaren Programmieraufgaben zum Einsatz, bei denen jede Studentin und jeder Student eine eigene Variante einer Programmieraufgabe erhält.
Wir beschreiben eine Möglichkeit, Variationspunkte und deren Varianten in automatisiert bewerteten Programmieraufgaben zu spezifizieren. Solche Variationspunkte kommen bei individualisierbaren Programmieraufgaben zum Einsatz, bei denen jede Studentin und jeder Student eine eigene Variante einer Programmieraufgabe erhält. Die Varianten werden automatisch gebildet, indem an definierten Variationspunkten immer wieder andere, konkrete Werte eingesetzt werden. Schon bei sehr einfachen Aufgaben bestehen Abhängigkeiten zwischen den einzelnen Variationspunkten, die bei der Wahl der konkreten Werte zu berücksichtigen sind. Zudem kann die Menge der gültigen Werte auch bei einfachen Aufgaben so groß werden, dass die vollständige Auflistung aller Wertkombinationen an Ressourcengrenzen scheitert. Die vorgestellte Spezifikation verwendet eine kompakte und für Aufgabenautoren verständliche Sprache, die eine automatische Auswahl von korrekten, den Abhängigkeiten gehorchenden Wertekombinationen ermöglicht. Die Sprache ist unabhängig von den Erfordernissen eines bestimmten Autobewerters und versetzt Frontend- und Backendsysteme in verschiedenen technischen Ökosystemen in die Lage, ausgewählte Werte einer sehr großen Wertemenge zu generieren, deren Abhängigkeiten zu prüfen, sowie ggf. bestimmte Wertbelegungen in einem benutzerfreundlichen Dialog auszuwählen. Wir unterstützen Variationspunkte mit endlichen Mengen vorzugebender diskreter Werte sowie kontinuierliche Wertebereiche, die durch eine vorzugebende Anzahl von Samples diskretisiert werden. Wir beschäftigen uns insbesondere mit der Frage, wie lange Auflistungen gültiger Wertkombinationen durch die Angabe von Ableitungsvorschriften ersetzt werden können. Ein besonderes Augenmerk legen wir auf eine redundanzfreie Beschreibung der Variantenmenge. Die Notation setzt auf XML und Javascript in der Annahme, dass diese Technologien in allen beteiligten Systemen zur Verfügung stehen können.
Ein Autobewerter für von Studierenden eingereichte Programme führt die im ProFormA-Aufgabenformat sequentiell spezifizierten "Tests" aus, um die Einreichung zu prüfen. Bzgl. der Interpretation und Darstellung der Testausführungsergebnisse gibt es derzeit keinen graderübergreifenden Standard. Wir beschreiben eine Erweiterung des ProFormA-Aufgabenformats um eine Hierarchie von Bewertungsaspekten, die nach didaktischen Aspekten gruppiert ist und Referenzen auf die Testausführungen besitzt. Die Erweiterung wurde in Graja umgesetzt, einem Autobewerter für Java-Programme. Je nach gewünschter Detailaufschlüsselung der Bewertungsaspekte müssen in der Konsequenz Testausführungen in Teilausführungen aufgebrochen werden. Wir illustrieren unseren Vorschlag unter Einsatz der Testwerkzeuge Compiler, dynamischer Softwaretest, statische Analyse sowie unter Einsatz menschlicher Bewerter.
In diesem Bericht wird der Autobewerter Graja für Java-Programme vorgestellt. Wir geben einen Überblick über die unterstützten Bewertungsmethoden sowie die beteiligten Nutzerrollen. Wir gehen auf technische Einzelheiten und Randbedingungen der in Graja eingesetzten Bewertungsmethoden ein und zeigen die Einbindung von Graja in eine technische Gesamtarchitektur. An einem durchgehenden Beispiel stellen wir die Struktur einer Programmieraufgabe sowie die von Graja unterstützten Feedback-Möglichkeiten dar. Informationen zum bisherigen Einsatz des Graders runden den Bericht ab.
Ein Schnittstellen-Datenmodell der Variabilität in automatisch bewerteten Programmieraufgaben
(2018)
Automatisch bewertete, variable Programmieraufgaben stellen besondere Schnittstellenanforderungen an Autobewerter (Grader) und Lernmanagementsysteme (LMS). Um Wiederverwendung von Aufgaben über Systemgrenzen hinweg zu begünstigen, schlagen wir vor, Aufgabenschablonen durch eine von allen beteiligten Systemen genutzte Middleware zu instanziieren und dabei Variabilitätsinformationen in einem Schnittstellen-Datenmodell zu transportieren. Wir stellen ein solches Datenmodell vor, welches für die Grader-unabhängige Kommunikation mit LMS ausgelegt ist und beispielhaft im Autobewerter Graja implementiert wurde. Zudem wird eine Dialogkomponente für die manuelle Werteauswahl vorgestellt, die auch bei großen Wertemengen effizient und Grader-unabhängig einsetzbar ist. Die Eignung des Dialogs und des Datenmodells wird anhand eines typischen Bewertungsszenarios diskutiert.
Automatisiert bewertbare Programmieraufgaben dienen Studierenden zum Einüben von Programmierfertigkeiten. Die Verfügbarkeit von mehreren verschiedenen Aufgaben, die denselben Stoff abdecken, ist für verschiedene Zwecke hilfreich. Eine Programmieraufgabe lässt sich durch Einführung von Variationspunkten variabel gestalten. Die hierbei entstehende Aufgabenschablone ist Ausgangsbasis der sogenannten Materialisierung, der automatischen Generierung konkreter Aufgaben. Der vorliegende Beitrag stellt ein Datenmodell mit dem Ziel vor, sowohl die Auswahl von Variationspunktwerten als auch die automatische Materialisierung auf verschiedenen Systemen in verschiedenen Programmiersprachen zu unterstützen. Das vorgeschlagene Datenformat ermöglicht Lernmanagementsystemen die Unterstützung variabler Programmieraufgaben bei gleichzeitiger Unkenntnis des eingesetzten Autobewerters.
Automatisiert bewertbare Programmieraufgaben definieren Tests, die auf Einreichungen angewendet werden. Da Testergebnisse nicht mit Bewertungsergebnissen gleichzusetzen sind, schlagen wir ein Beschreibungsformat vor, das Testergebnisse auf Bewertungsergebnisse abbildet. Lehrkräfte können die Abbildungsvorschrift an ihren Lehrkontext anpassen. Der Vorschlag ist unabhängig von den beteiligten Autobewertern, von den eingesetzten Benutzungsschnittstellen und von der zu lernenden Programmiersprache einsetzbar. Das Format basiert auf verschachtelten Bewertungskategorien, welche um ein Nullifikationen-Konzept ergänzt werden. Letzteres sucht einen Ausgleich im Spannungsfeld zwischen einem für Studierende einfach verständlichen Bewertungsergebnis und den Eigenarten der eigentlich nicht für Bewertungszwecke erfundenen, nichtsdestotrotz regelmäßig und sinnvollerweise für Bewertungszwecke eingesetzten Softwarewerkzeuge.
Automatisiert bewertbare Programmieraufgaben definieren Tests, die auf Einreichungen angewendet werden. Da Testergebnisse nicht mit Bewertungsergebnissen gleichzusetzen sind, schlagen wir ein Beschreibungsformat vor, das Testergebnisse auf Bewertungsergebnisse abbildet. Lehrkräfte können die Abbildungsvorschrift an ihren Lehrkontext anpassen. Der Vorschlag ist unabhängig von den beteiligten Autobewertern, von den eingesetzten Benutzungsschnittstellen und von der zu lernenden Programmiersprache einsetzbar. Das Format basiert auf verschachtelten Bewertungskategorien, welche um ein Nullifikationen-Konzept ergänzt werden.