Refine
Document Type
- Conference Proceeding (1)
- Working Paper (1)
Keywords
- Distributional Semantics (2) (remove)
Distributional semantics tries to characterize the meaning of words by the contexts in which they occur. Similarity of words hence can be derived from the similarity of contexts. Contexts of a word are usually vectors of words appearing near to that word in a corpus. It was observed in previous research that similarity measures for the context vectors of two words depend on the frequency of these words. In the present paper we investigate this dependency in more detail for one similarity measure, the Jensen-Shannon divergence. We give an empirical model of this dependency and propose the deviation of the observed Jensen-Shannon divergence from the divergence expected on the basis of the frequencies of the words as an alternative similarity measure. We show that this new similarity measure is superior to both the Jensen-Shannon divergence and the cosine similarity in a task, in which pairs of words, taken from Wordnet, have to be classified as being synonyms or not.
Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets.