A Probabilistic Morphology Model for German Lemmatization
- Lemmatization is a central task in many NLP applications. Despite this importance, the number of (freely) available and easy to use tools for German is very limited. To fill this gap, we developed a simple lemmatizer that can be trained on any lemmatized corpus. For a full form word the tagger tries to find the sequence of morphemes that is most likely to generate that word. From this sequence of tags we can easily derive the stem, the lemma and the part of speech (PoS) of the word. We show (i) that the quality of this approach is comparable to state of the art methods and (ii) that we can improve the results of Part-of-Speech (PoS) tagging when we include the morphological analysis of each word.
Author: | Christian WartenaORCiDGND |
---|---|
URN: | urn:nbn:de:bsz:960-opus4-15271 |
DOI: | https://doi.org/10.25968/opus-1527 |
Parent Title (English): | Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019) |
Document Type: | Conference Proceeding |
Language: | English |
Year of Completion: | 2019 |
Publishing Institution: | Hochschule Hannover |
Release Date: | 2019/12/12 |
Tag: | German; Lemmatization; Markov Models; POS Tagging |
GND Keyword: | Computerlinguistik |
First Page: | 40 |
Last Page: | 49 |
Link to catalogue: | 1688180885 |
Institutes: | Fakultät III - Medien, Information und Design |
DDC classes: | 020 Bibliotheks- und Informationswissenschaft |
400 Sprache, Linguistik | |
Licence (German): | Creative Commons - CC BY-NC-SA - Namensnennung - Nicht kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International |