Volltext-Downloads (blau) und Frontdoor-Views (grau)

Sensors vs. experts - a performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients

  • Background: Fall events contribute significantly to mortality, morbidity and costs in our ageing population. In order to identify persons at risk and to target preventive measures, many scores and assessment tools have been developed. These often require expertise and are costly to implement. Recent research investigates the use of wearable inertial sensors to provide objective data on motion features which can be used to assess individual fall risk automatically. So far it is unknown how well this new method performs in comparison with conventional fall risk assessment tools. The aim of our research is to compare the predictive performance of our new sensor-based method with conventional and established methods, based on prospective data. Methods: In a first study phase, 119 inpatients of a geriatric clinic took part in motion measurements using a wireless triaxial accelerometer during a Timed Up&Go (TUG) test and a 20 m walk. Furthermore, the St. Thomas Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) was performed, and the multidisciplinary geriatric care team estimated the patients’ fall risk. In a second follow-up phase of the study, 46 of the participants were interviewed after one year, including a fall and activity assessment. The predictive performances of the TUG, the STRATIFY and team scores are compared. Furthermore, two automatically induced logistic regression models based on conventional clinical and assessment data (CONV) as well as sensor data (SENSOR) are matched. Results: Among the risk assessment scores, the geriatric team score (sensitivity 56%, specificity 80%) outperforms STRATIFY and TUG. The induced logistic regression models CONV and SENSOR achieve similar performance values (sensitivity 68%/58%, specificity 74%/78%, AUC 0.74/0.72, +LR 2.64/2.61). Both models are able to identify more persons at risk than the simple scores. Conclusions: Sensor-based objective measurements of motion parameters in geriatric patients can be used to assess individual fall risk, and our prediction model’s performance matches that of a model based on conventional clinical and assessment data. Sensor-based measurements using a small wearable device may contribute significant information to conventional methods and are feasible in an unsupervised setting. More prospective research is needed to assess the cost-benefit relation of our approach.

Download full text files

Export metadata

Additional Services

Search Google Scholar


Author:Michael MarschollekGND, Anja Rehwald, Klaus-Hendrik Wolf, Matthias Gietzelt, Gerhard Nemitz, Hubertus Meyer zu Schwabedissen, Mareike SchulzeGND
DOI original:https://doi.org/10.1186/1472-6947-11-48
Parent Title (English):BMC Medical Informatics and Decision Making
Document Type:Article
Year of Completion:2011
Publishing Institution:Hochschule Hannover
Release Date:2017/08/02
GND Keyword:Sensor; Geriatrie; Sturz; Unfallrisiko
Link to catalogue:898380731
Institutes:Fakultät III - Medien, Information und Design
DDC classes:610 Medizin, Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung 2.0