Volltext-Downloads (blau) und Frontdoor-Views (grau)

Steps and Challenges in Analyzing Real Sensor Data from a Productive Press Shop and its Value for Predictive Maintenance Application

  • This paper highlights the significance of AI-powered maintenance strategies in modern industry for operational optimization and reduced downtime. It emphasizes the crucial role of sensor data analysis in identifying anomalies and predicting failures. The research specifically examines sensor data from an automotive press shop, addressing questions related to data selection, collection challenges, and knowledge generation. By utilizing unsupervised learning on compressed air data from a press line, the study identifies patterns, anomalies, and correlations. The results offer insights into the potential for implementing an effective predictive maintenance strategy. Additionally, a systematic literature review underscores the importance of data analysis in production systems, particularly in the context of maintenance.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Safa Evirgen, Maylin WartenbergORCiD
URN:urn:nbn:de:bsz:960-opus4-34401
DOI:https://doi.org/10.25968/opus-3440
DOI original:https://doi.org/10.5121/ijci.2024.130301
ISSN:2277-548X
Parent Title (English):International Journal on Cybernetics & Informatics
Publisher:Academy and Industry Research Collaboration Center (AIRCC)
Document Type:Article
Language:English
Year of Completion:2024
Publishing Institution:Hochschule Hannover
Release Date:2025/01/08
Tag:Predictive Maintenance; production; sensor data analytics; smart database
GND Keyword:Prädiktive Instandhaltung; Datenbank; Sensor; Data Science
Volume:13
Issue:3
First Page:1
Last Page:10
Link to catalogue:191522201X
Institutes:Fakultät IV - Wirtschaft und Informatik
DDC classes:004 Informatik
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International