Volltext-Downloads (blau) und Frontdoor-Views (grau)

Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning

  • We study the statistical properties of the Bitcoin return series and provide a thorough forecasting exercise. Also, we calibrate state-of-the-art machine learning techniques and compare the results with econometric time series models. The empirical assessment provides evidence that the application of machine learning techniques outperforms econometric benchmarks in terms of forecasting precision for both in- and out-of-sample forecasts. We find that both deep learning architectures as well as complex layers, such as LSTM, do not increase the precision of daily forecasts. Specifically, a simple recurrent neural network describes a sensible choice for forecasting daily return series.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Theo BergerORCiDGND, Jana Koubová
URN:urn:nbn:de:bsz:960-opus4-31780
DOI:https://doi.org/10.25968/opus-3178
DOI original:https://doi.org/10.1002/for.3165
ISSN:1099-131X
Parent Title (English):Journal of Forecasting
Publisher:Wiley
Document Type:Article
Language:English
Year of Completion:2024
Publishing Institution:Hochschule Hannover
Release Date:2024/10/15
Tag:forecasting; machine learning; risk measurement; time series analysis
GND Keyword:Prognose; Maschinelles Lernen; Risikoanalyse; Zeitreihenanalyse; Bitcoin
Volume:43
Issue:7
First Page:2904
Last Page:2916
Link to catalogue:1910694797
Institutes:Fakultät IV - Wirtschaft und Informatik
DDC classes:330 Wirtschaft
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International