Visualization of data cubes for anomaly detection in network traffic data streams
- For anomaly-based intrusion detection in computer networks, data cubes can be used for building a model of the normal behavior of each cell. During inference an anomaly score is calculated based on the deviation of cell metrics from the corresponding normality model. A visualization approach is shown that combines different types of diagrams and charts with linked user interaction for filtering of data.
Author: | Volker AhlersORCiDGND, Tim Laue, Nils Wellermann, Felix HeineORCiDGND |
---|---|
URN: | urn:nbn:de:bsz:960-opus4-21606 |
DOI: | https://doi.org/10.25968/opus-2160 |
DOI original: | https://doi.org/10.1109/IDAACS53288.2021.9660978 |
ISBN: | 978-1-6654-2605-3 |
ISSN: | 2770-4254 |
Parent Title (English): | 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) |
Publisher: | IEEE |
Document Type: | Conference Proceeding |
Language: | English |
Year of Completion: | 2021 |
Publishing Institution: | Hochschule Hannover |
Release Date: | 2022/01/24 |
Tag: | Datenwürfel Data Cubes; Information Visualization; Multidimensional Analysis; Network Security; User Interfaces |
GND Keyword: | Computersicherheit; Rechnernetz; Benutzeroberfläche; Visualisierung |
First Page: | 272 |
Last Page: | 277 |
Link to catalogue: | 1795490780 |
Institutes: | Fakultät IV - Wirtschaft und Informatik |
DDC classes: | 004 Informatik |
Licence (German): | ![]() |