Sensors vs. experts - a performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients

  • Background: Fall events contribute significantly to mortality, morbidity and costs in our ageing population. In order to identify persons at risk and to target preventive measures, many scores and assessment tools have been developed. These often require expertise and are costly to implement. Recent research investigates the use of wearable inertial sensors to provide objective data on motion features which can be used to assess individual fall risk automatically. So far it is unknown how well this new method performs in comparison with conventional fall risk assessment tools. The aim of our research is to compare the predictive performance of our new sensor-based method with conventional and established methods, based on prospective data. Methods: In a first study phase, 119 inpatients of a geriatric clinic took part in motion measurements using a wireless triaxial accelerometer during a Timed Up&Go (TUG) test and a 20 m walk. Furthermore, the St. Thomas Risk Assessment Tool in Falling Elderly Inpatients (STRATIFY) was performed, and the multidisciplinary geriatric care team estimated the patients’ fall risk. In a second follow-up phase of the study, 46 of the participants were interviewed after one year, including a fall and activity assessment. The predictive performances of the TUG, the STRATIFY and team scores are compared. Furthermore, two automatically induced logistic regression models based on conventional clinical and assessment data (CONV) as well as sensor data (SENSOR) are matched. Results: Among the risk assessment scores, the geriatric team score (sensitivity 56%, specificity 80%) outperforms STRATIFY and TUG. The induced logistic regression models CONV and SENSOR achieve similar performance values (sensitivity 68%/58%, specificity 74%/78%, AUC 0.74/0.72, +LR 2.64/2.61). Both models are able to identify more persons at risk than the simple scores. Conclusions: Sensor-based objective measurements of motion parameters in geriatric patients can be used to assess individual fall risk, and our prediction model’s performance matches that of a model based on conventional clinical and assessment data. Sensor-based measurements using a small wearable device may contribute significant information to conventional methods and are feasible in an unsupervised setting. More prospective research is needed to assess the cost-benefit relation of our approach.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Marschollek, Anja Rehwald, Klaus-Hendrik Wolf, Matthias Gietzelt, Gerhard Nemitz, Hubertus Meyer zu Schwabedissen, Mareike Schulze
URN:urn:nbn:de:1111-201607213155
DOI:http://dx.doi.org/10.1186/1472-6947-11-48
ISSN:1472-6947
Parent Title (English):BMC Medical Informatics and Decision Making
Document Type:Article
Language:English
Year of Completion:2011
Release Date:2017/08/02
GND Keyword:Geriatrie; Sensor; Sturz; Unfallrisiko
Volume:2011
Issue:11:48
Institutes:Fakultät III - Medien, Information und Design
Dewey Decimal Classification:610 Medizin, Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung 2.0