
Mastering the Game of Abalone using
Deep Reinforcement Learning and Self-
Play
Ture Claußen
Bachelor thesis in ”Applied computer science”

February 2, 2022

Author Ture Claußen
Matriculation number: 1531067
Hochschule Hannover
tu.cl@pm.me

First examiner: Prof. Dr. Adrian Pigors
Abteilung Informatik, Fakultät IV
Hochschule Hannover
adrian.pigors@hs-hannover.de

Second examiner: Prof. Dr. Ralf Bruns
Abteilung Informatik, Fakultät IV
Hochschule Hannover
ralf.bruns@hs-hannover.de

Declaration of authorship

I hereby declare that I have written this thesis independently without any help from oth-
ers and without the use of documents or aids other than those stated. I have mentioned
all used sources and cited them correctly according to established academic citation
rules.

Hannover, February 2, 2022 Signature

Contents

Abstract 5

Preface 6

1 Introduction 7
1.1 Background and Motivation . 7
1.2 Research Goals . 9
1.3 Structure . 9

2 Background Theory 11
2.1 Artificial Intelligence . 11

2.1.1 Rational Agent . 11
2.1.2 (Task) Environment . 12

2.2 Adversarial Search . 14
2.2.1 Minimax Algorithm . 14
2.2.2 Heuristic Functions . 15
2.2.3 Alpha-beta Pruning . 16
2.2.4 Monte Carlo Tree Search . 18

2.3 Reinforcement Learning . 21
2.3.1 Markov Decision Processes . 22
2.3.2 Exploration vs. Exploitation . 25

2.4 Deep Reinforcement Learning . 27
2.4.1 (Deep) Neural Networks . 27
2.4.2 Convolutional Neural Network . 31
2.4.3 Residual Networks . 33
2.4.4 AlphaGo . 34
2.4.5 AlphaZero . 37

3 Abalone 43
3.1 Rules . 43
3.2 Task Environment . 44
3.3 Board Representations . 45
3.4 Move Notation . 46
3.5 Symmetries . 47

3

Contents

3.6 Complexity . 47
3.7 Existing Game-Playing Agents . 49

3.7.1 Minimax . 49
3.7.2 MCTS . 49
3.7.3 Reinforcement Learning . 50

4 System Architecture 51
4.1 Software . 51

4.1.1 Deep Learning Library . 51
4.1.2 Training Framework . 53
4.1.3 Game Engine . 53

4.2 Neural Network . 55
4.2.1 Dimensions . 55
4.2.2 Architecture . 56

4.3 Training Pipeline . 59
4.3.1 Components . 59
4.3.2 Training Algorithm . 60
4.3.3 Parallelization . 62
4.3.4 Distribution . 64
4.3.5 Symmetrical Board Generation 65
4.3.6 Warm-Up . 66

5 Experiments and Results 67
5.1 Hardware . 67
5.2 Parameters . 67
5.3 Validation . 69
5.4 Application . 70

5.4.1 Naive Run . 70
5.4.2 Naive Run with large NN . 70
5.4.3 Scaled naive Run . 71
5.4.4 Reward Distribution . 72
5.4.5 Scaled warmed-up Run . 72
5.4.6 Scaled Run with adjusted Reward 73
5.4.7 Runtime of Experiments . 74

6 Conclusion 78
6.1 Goal Evaluation . 78
6.2 Future Work . 78

4 Ture Claußen

Abstract

AlphaGo’s victory against Lee Sedol in the game of Go has been a milestone in arti-
ficial intelligence. After this success, the team behind the program further refined the
architecture and applied it to many other games such as chess or shogi. In the following
thesis, we try to apply the theory behind AlphaGo and its successor AlphaZero to the
game of Abalone. Due to limitations in computational resources, we could not replicate
the same exceptional performance.

5

Preface

I am very grateful to the Hochschule Hannover for making this work possible. I was
provided the opportunity and means to study the theoretical basis for this work in Korea.
Furthermore, the university made the necessary computing and counselling resources
available to me.

6

1 Introduction

1.1 Background and Motivation

Board games are and have been a popular environment to test the capabilities of state-
of-the-art artificial intelligence against human opponents. Many board games are widely
known, making them a tangible measure of performance. The most prominent examples
are the games of Chess and Go. For both, machines defeating the current best players
has been representative of fundamental progress in computing.

IBM’s ”Deep Blue” defeated Gary Kasparov in 1996 [1] by utilizing search to look ahead
into the game tree and deliberate on the next move. This approach is a prime example
for symbolic AI approaches, ”good-old-fashioned-AI” (”GOFAI”) [2, p. 112f], which rely
on logic and search on symbolic representations.

However, our limited ability to model the problem correctly and exhaustively severely
constrains these knowledge-based approaches. For example, in the case of Deep Blue, it
requires us to encode expert knowledge about chess in a heuristic function to evaluate
the board. Only then we can search for actions that maximize this function. Problems
with large complexity would require tremendous efforts, which just become infeasible at
a certain point.

A different approach would be devising (general) methods to learn the necessary domain
knowledge from scratch, tabula rasa. As Alan Turing put it:

Instead of trying to produce a programme to simulate the adult mind, why
not rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult
brain. Presumably, the child-brain is something like a notebook as one buys
it from the stationers. Rather little mechanism, and lots of blank sheets.
[...] Our hope is that there is so little mechanism in the child-brain that
something like it can be easily programmed. [3]

The recent success of ”AlphaGo” in 2016 against the long-time world champion Lee Sedol
[4] in the game Go is a milestone that perfectly demonstrates this shift towards ”bottom-
up” or subsymbolic methods [5]. The increasing availability of computational power (and
data) has enabled two subsymbolic methods to find considerable success in unclaimed

7

1 Introduction

territory, such as computer vision or natural language processing. Namely, those are
neural networks and (stochastic) gradient descent with backpropagation. Combined,
they provide a general function approximator that can be trained in a process akin to
the learning described by Turing.

In the case of Go, designing a powerful heuristic function was deemed impossible for
humans. The team from DeepMind created AlphaGo using (deep) neural networks to
learn an evaluation function based on an extensive database of expert moves. With
the help of reinforcement learning (RL), they improved this network even further by
letting it play against itself. They used this trained function to then perform a look-
ahead search on the game tree more effectively [6]. Building on this success, DeepMind
further improved the architecture. ”AlphaGo Zero” and the generalization ”AlphaZero”
learn without the help of the database of expert moves. AlphaZero’s learning process
exclusively relies on deep reinforcement learning and self-play. Nevertheless, it surpassed
the performance of AlphaGo significantly. Since then, the architecture has been applied
to Chess, Shogi, and Atari games. ”MuZero” went even further by removing the last
piece of human knowledge in the system: the rules of the game [7].

(a) The original physical board of the game [8] (b) Note the hexagonal shape of
the board and the fields. A
marble can be moved in upto
six directions.

Figure 1.1: The board of Abalone

At this point, our endeavor begins. The goal of this thesis is to apply the methods of
AlphaZero to the game of Abalone. Abalone is a relatively young board game from
1987. The main variant is played by two players on a hexagonal board with 61 fields
and 14 marbles for black and white, respectively. The game’s goal is to push six of the
opponent’s marbles off the playing field.

Naturally, the question arises whether this goal is a worthwhile thing to do. Firstly,
academic interest in Abalone has remained steady even though the game’s popularity

8 Ture Claußen

1.2 Research Goals

declined. However, the application of learning methods to Abalone is less explored,
especially regarding the novel techniques introduced by AlphaZero.

Secondly, further investigating the applicability of RL is a relevant topic. Along with su-
pervised and unsupervised learning, reinforcement learning is one of three basic machine
learning paradigms [9]. Aside from (super-) human performance in games [10, 11, 12],
RL continues to find more industry application in areas like improving data center cool-
ing at Google [13] or content recommendation at Spotify [14] and Netflix [15]. A very
recent example is the floor planning for Google’s latest TPU chip, which was aided by
a deep RL algorithm [16].

Additionally, RL finds application in robotic control. Through continuous trial and
error learning robots learned to grasp [17, 18], poke [19] or to avoid obstacles [20]. The
learning was either performed in a simulated digital environment or through physical
interaction.

1.2 Research Goals

First, let us establish the main research questions that will guide us throughout this
thesis.

The first goal is to apply the general framework of self-play learning outlined in ”Mas-
tering the game of Go without human knowledge” to the board game of Abalone. [6] The
original paper gives clear instructions on the theoretical groundwork for the system but
omits clear instructions for the implementation. There is no open-source code provided.

The second goal is to compare classical search-based methods to AlphaZero’s deep
reinforcement learning based on several criteria such as win/loss ratio and computational
requirements.

1.3 Structure

To provide the theoretical knowledge for understanding AlphaZero, the chapter 2 de-
scribes fundamentals in artificial intelligence, game-playing algorithms, (deep) reinforce-
ment learning. The structure also mirrors the historical development of the methods.

The chapter 3 uses some of the previously introduced knowledge to analyze Abalone and
also provides insight into existing game-playing programs to gauge the state of the art.

9

1 Introduction

The chapter 4 is about the concrete implementation AlphaZero’s methods for Abalone.
It encompasses considerations about third-party software, Abalone specific adaptations,
architecture, and algorithms.

Based on this software, chapter 5 shows the experimental setup and the results for the
implementation.

Lastly, in chapter 6 an evaluation of the results given and an outlook for the continuation
of the work is given.

10 Ture Claußen

2 Background Theory

Before we move to the nuts and bolts of AlphaZero and our concrete implementation
for Abalone, we should establish a general understanding of the problem. That includes
building the necessary theoretical background in artificial intelligence in general, as well
as insight into specialized knowledge such as deep reinforcement learning in particular.

2.1 Artificial Intelligence

The introduction has already foreshadowed how artificial intelligence has undergone a
shift in its methodology. In the 1950s and 1960s, figures like Alan Turing and von Neu-
mann laid the foundations for modern computers. These new machines sparked the idea
that one could create programs with similar abilities to humans and other organisms.
Researchers at that time assumed there was no ”universal principle” behind intelligence
and focused on reason and symbol manipulation. Therefore, these methods were con-
sidered ”strong techniques.” Methods that relied on general principles like learning were
labeled ”weak techniques .” Nowadays, the consensus in the field has reversed. [21, cf.
p. 8f.]

2.1.1 Rational Agent

Any setting that involves artificial intelligence has an agent. Stemming from the Latin
word agere meaning ”to act,” an agent is something that acts. As one expects an agent
to take sensible or intelligent actions, the definition must be further qualified by calling
the agent rational. A rational agent acts ”to achieve the best outcome or, when there is
uncertainty, the best expected outcome.” [22, p. 36]

The agent exists in an environment that it perceives through sensors and takes actions
through its actuators. The content of the sensor’s output for one observation is referred
to as percept: A cat uses eyes, ears, and other organs to perceive the world and its legs,
claws, and so on to interact with the world. An autonomous car might use radar and
cameras for acquiring information and steering and motors for navigation.

11

2 Background Theory

Figure 2.1: The agent-environment interaction loop [22, cf. p. 96]

Internally the agent might have some built-in knowledge about the world, such as rules
on how the environment works. The agent function takes the entire history of percepts
observed and this built-in knowledge and maps it to an action. A concrete implemen-
tation of this abstract function is called agent program. The agent program might just
be a simple tabular mapping from percepts to actions or a complex algorithm with an
additional model.

This abstract definition of an agent encompasses a simple program that plays Tic-Tac-
Toe and very complex scenarios like a humanoid robot tasked to help in the household.

2.1.2 (Task) Environment

As we are trying to build an agent that tries to achieve some specified goal, we can
consider its environment as a problem or task the agent tries to solve. The Tic-Tac-Toe
program lives in a game world with simple rules while the humanoid robot interacts
with physical reality. The environment might change either due to other influences or
by the agent’s actions. Putting together both agent and the environment, we see a loop
of observing, deliberating, and finally taking an action as depicted in figure 2.1.

To specify the task environment, there are four core components illustrated for a machine
classifying defective parts in a production line:

1. Performance measure: This might be the percentage of correctly broken parts
(true positives) weighed against the number of incorrectly identified parts (false
positives).

12 Ture Claußen

2.1 Artificial Intelligence

2. Environment: The conveyor belt and the parts

3. Actuators: An arm to push the parts to a different conveyor belt

4. Sensors: Possibly a camera, infrared sensors, etc.

The initial letters form the acronym PEAS (framework). Aside from the specification
of the task environment, there are also a few categorizations of the properties of task
environments that are extremely helpful for narrowing down the potential applicability
of different classes of algorithms.

A fundamental property is the observability of the environment. If the environment is
fully observable, the sensors detect all the information that is in any way relevant for
taking an action. Conversely, if not all information can be observed, we call it partial
observability. For example, in poker, the other player’s cards and the upcoming cards
cannot be seen but are highly relevant to the agent’s actions. As the current board state
of chess entirely comprises all information necessary to make a move, we can classify it
as fully observable.

The values of the state of the environment and time can be categorized into discrete
and continuous. For instance, an autonomous vehicle deals with continuous time and
continuous states. The car’s speed takes a smooth range of real values, and time can be
meaningfully split into increasingly small intervals. Board games are entirely discrete.
The set of all states is a finite collection of all (legal) configurations of the board and
the gaming pieces. Time progresses on the basis of turns.

An agent’s actions might also be non-deterministic. When dealing with systems of high
complexity, the next state might not only depend on the previous state and the action
taken. Other car drivers might take unexpected actions, or a comet hits the car.

It has to be taken into account if actions have consequences for future states. If each
combination of percept and action is independent of each other, it is called episodic and
sequential otherwise. If one had to classify a production line of circuit boards as either
defective or functional, it would be an episodic environment. The classification of an
individual board does not matter for the next one.

Another aspect of time is whether the environment changes while the agent takes time
to deliberate on the next move. In a dynamic environment like the autonomous vehicle
operates in, the environment changes continuously. By the time the car decides whether
to go right to avoid collision with a wall, this decision might have already become
obsolete. A turn-based game like chess is static as the board only changes when a move
is made.

Lastly, an additional dimension to consider is the number of agents involved. The
classification of circuit boards only involves one agent, whereas chess is a multi-agent
environment. We also have to distinguish whether those multiple agents compete for

13

2 Background Theory

the performance measure. In most board games, one player’s win is the other player’s
loss. In contrast, apart from an autonomous vehicle, the other vehicles all profit when
it avoids a collision and vice versa. Therefore, they cooperate.

2.2 Adversarial Search

With an intricate understanding of agents’ environment, the choice of algorithms one can
employ can be narrowed down. In general, perfect information games can be solved by
adversarial search algorithms. That means, in theory, one can find the optimal solution
by considering all legal moves and the resulting game states up until terminal states
(game-ending states). This is the game tree. It contains all possible transitions between
board positions (nodes) through moves (edges). The root of the tree is the default start
position. The search tree is potentially a subset of the game tree if not all paths are
visited or the search does not commence at the starting position. The theory behind this
type of algorithm was already laid out as early as 1945 by Konrad Zuse’s program for
generating legal chess moves [23], but was described most comprehensively by Claude
Shannon in 1950 in ”Programming a Computer for Playing Chess.” [24]

2.2.1 Minimax Algorithm

Minimax assumes two roles: The minimizer (min) and the maximizer (max). The search
starts from the current board state as the role of the maximizer and then alternates
between the two. The result of the minimax search gives the maximum utility for the
given state, assuming both players behave optimally. Let us define the functions [22, p.
303f.]

• utility(s, p) returns the utility or the payoff for the terminal state s seen from
the perspective of player p. In the case of chess this might be −1, 0 and 1 for a
loss, draw and a win.

• is-terminal(s) returns whether the given state s is a terminal state or not.

• to-move(s) returns the current player for the state s, either min or max.

• result(s, a) returns the resulting state if in state s and taking action a.

• actions(s) returns all legal moves for the given state s.

14 Ture Claußen

2.2 Adversarial Search

Figure 2.2: Minimax for a small search tree, resulting in an utility value of 1 [22, cf. p.
303]

minimax(s) =

utility(s, max) is-terminal(s)
maxa∈actions(s)minimax(result(s, a)) to-move(s) == max

mina∈actions(s)minimax(result(s, a)) to-move(s) == min

(2.1)

Putting this together, we can see in figure 2.2 a graphical representation of the search
tree for an abstract example. The algorithm traverses down to a leaf node, evaluates
its utility, and passes the value back to the parent node. Depending on whether it is a
minimizer or a maximizer, it chooses the smallest or the largest value passed up by its
children. Again, this value is passed up to the parent until the algorithm reaches the
root node, which is always a maximizer, yielding the maximum utility the maximizer
can achieve given the opponent plays optimally.

2.2.2 Heuristic Functions

As the number of nodes of the game tree gets very large, the search on the tree usually
does not reach terminal leaves that indicate a clear loss or win. The computational
resources will get exhausted first. For example minimax has already visited 361 ∗ 360 ∗
359 ∗ 358 = 16, 702, 719, 120 nodes at a depth of d = 4 in the case of an average Go
game.

Therefore, one has to limit the search to a computationally feasible depth and evaluate
the intermediary result of a given transposition based on a so-called heuristic function.

15

2 Background Theory

This function replaces our previous utility(s) for terminal states and is based on human
knowledge. The function should give precise feedback on the quality of a state from
the perspective of the given player. Most commonly, the heuristic function combines
multiple state evaluations into a total numerical value [22, cf. p. 316]. For instance, in
chess, the evaluations fi could be functions calculating different values such as:

• Material: First, each piece is assigned an integer that represents the piece’s relative
value (pawn = 1, bishop/knight = 3, rook = 5, and queen = 9). Then sum the
values of the pieces left on the board for each player.

• Space: Count the squares controlled by each player.

• King safety: Check weaknesses in the king’s position or count attacking pieces
close to the king.

• Win and loss: As a more definitive measure to indicate whether the current state
is a terminal state and hence a winning or losing state.

These evaluation functions can be combined into a linear combination of the form of:

h(s) = ω0f0(s) + ... + ωnfn(s) (2.2)

By applying different weights, ωi to the functions fi, the agent is given an incentive to
prioritize a particular behavior. If the win or loss function returns a value of either −1
or +1, one might combine it with a weight of 10,000 to make sure we choose winning
states and avoid losing states above all. Armed with this heuristic function, one can find
good moves with minimax search even in highly complex state spaces.

However, the problem with heuristic functions is that they require expert knowledge
and much empirical testing to find a suitable heuristic. In some cases like Go, such a
heuristic function might not be competitive with even moderate human players. In other
cases, such as chess, this strategy is very powerful. As mentioned in the introduction,
IBM’s Deep Blue could beat the world’s best player Gary Kasparov with heuristic-based
adversarial search.

2.2.3 Alpha-beta Pruning

The minimax search can be improved markedly by using Alpha-beta-pruning. This
method tries to eliminate unnecessary traversals down the search tree. In the best case,
this leads to a reduction of nodes from O(bd) to O(

√
bd).

The order in which the nodes are visited in minimax is similar to a graph traversal with
depth-first search, meaning the algorithm descends until it finds a leaf node. This gives

16 Ture Claußen

2.2 Adversarial Search

Figure 2.3: The previous example but with alpha beta pruning applied. The grayed out
nodes indicate, that these in fact could be pruned from the tree [22, cf. p.
308]

information about the utility of that node and, consequently, part of the tree. An alpha
value is kept for the minimum value the maximizer will receive and a beta value for
the maximum value the minimizer will achieve. For instance, this lets one know if the
minimizer already can choose a move worse than what can be achieved with another
move. The algorithm does not descend further (α > β).

Looking at the example in figure 2.3 will help illustrate this principle. The search
revealed that choosing move a1 will yield a utility of at least 0. Traversing down move
a2 the first leaf has a utility of −1. Hence, the minimizer will choose a move that is at
most −1, which is already worse than the utility of 0. One need not look further at this
part of the tree.

The example also shows us an important prerequisite for this method to work. The order
in which each node is expanded matters, as it decides how many nodes we can prune.
Had the algorithm visited move c3 and c2 first, pruning would not have been possible.
The best case of O(

√
bd) is entirely dependent on this ordering. There are different ways

of ranking the moves:

• Killer move heuristic prioritizes moves that are usually undoubtedly good, like
taking a piece in chess.

• Iterative deepening Performs a minimax search only to a depth of one and uses the
resulting values to rank the moves. Then searching one level deeper, we use this
ranking for ordering the moves. Even though there is redundancy, it is made up
for more than enough by pruning much more effectively.

17

2 Background Theory

Other improvements to the procedure are thinkable as well. Once one performs a search
for a specific state, the resulting utility can be stored. If this position is reencountered
because of a different move sequence (transposition), the state’s utility can be looked up
in the transposition table.

The minimax algorithm combined with alpha-beta pruning is a very efficient way of
finding the optimal utility in an adversarial search situation. However, as mentioned
before, in most games, the utility of the terminal states cannot be used because the
search tree grows too quickly. By optimizing for a heuristic function, the quality of play
solely depends on this function. Minimax has been very successful for games such as
chess because humans could devise meaningful heuristic functions. The chess engine
stockfish has been the most successful computer player for a long time and is based on
this algorithm (and many optimizations). [25, 26]

2.2.4 Monte Carlo Tree Search

For games like Go, it was deemed impossible to find powerful heuristic functions, which
makes the previous approach of minimax, not a viable option. In addition, the initial
position of a 19 · 19 Go board has a branching factor of 361, decreasing only by one for
each stone placed. A method proposed in 2006 by Coulom [27] called Monte Carlo Tree
search was more successful for Go. The main idea is to use simulations or rollouts (or
playouts) to gain information on the quality of a state. The algorithm is selective in
which parts of the tree are expanded to manage the complexity of the search tree more
effectively. The selectivity ensures that resources are not wasted on unpromising moves.

In its purest form, the simulations are performed randomly. This means that for a
state or node to be investigated, two random players take turns until a terminal state is
reached. Kocsis and Szepesvári [28] showed that it does converge to optimal play. For
games with a high branching factor, many simulations are needed to get any meaningful
information from the simulations. Hence a non-random rollout policy could be used
instead. The policy may guide the moves taken in the simulation towards better moves.
It might be as simple as favoring capturing moves or, as we will see later, neural networks.

The algorithm iteratively expands the search tree. For each iteration (also called simu-
lation) it runs through four steps:

• Selection is the process of deciding which node to consider next. Starting at
the root node, a node is selected until a leaf node is reached. The leaf node is
the selected node. The selection of the nodes could be based on some probability
distribution or use the knowledge gained over time.

• Expansion is the step in which the selected node is expanded by appending a
new child node.

18 Ture Claußen

2.2 Adversarial Search

Figure 2.4: Monte Carlo tree search stages, cf. [29]

• Simulation is, as described before, the step in which a simulation is performed
with a rollout policy starting from the state of the newly generated child node.

• Back-propagation is the last step. The simulation result (utility) is taken and
written to the node and parent nodes above until the root node is reached. Each
node updates its cumulative utility U(n) and the number of times it was visited
N(n). It is important to note that this is to be differentiated from backpropagation
in the context of neural networks (c.f. 2.4.1).

The more this cycle is repeated, the more certainty is gained about the best move to
take.

The development of MCTS led to significant improvements in the performance of game-
playing agents in the game of Go. The algorithm ”Crazy Stone” from Coulom won the
10th KGS computer-Go tournament against competitors such as Indigo [30]. In the
selection phase, Crazy Stone estimates the probability of that move being better than
the current best move and selects them according to that probability. The probability
distribution over the moves is similar to the Gaussian distribution and the Boltzmann
equations. [27, p. 4]

Another idea for selection is the upper confidence bound formula (UCB1) [31], that
weighs how often a node n is visited and how promising it is. Let us define [22, cf. p.
328]:

19

2 Background Theory

1. Parent(n) returns the parent node of node n.

2. N(n) returns the number of playouts performed on node n and its children.

3. U(n) returns the cumulative utility of node n. For instance, this might be the
number of wins for node n and its children.

UCB1(n) = U(n)
N(n) + C ·

√√√√ log N(Parent(n))
N(n) (2.3)

The cumulative utility U(n) is normalized by the number of times the node was visited
N(u). This term helps favor moves that are either relatively unexplored and promising
or have proven to be good over a larger set of nodes. It is also called the exploitation
term. The additional term is called the exploration term: The more often a node is
visited, the smaller this term gets, converging to 0 for large N(n). The constant factor
C is subject to some debate on which value might be optimal. Some choose

√
2. In

general, this hints at another point of investigation: The problem of exploration vs.
exploitation 2.3.2 that we will inspect more closely later.

The leading researcher behind AlphaGo and AlphaZero, David Silver, started his re-
search on Go with MCTS. As early as 2006 he, and Sylvian Gelly investigated optimiza-
tions to MCTS [32] for the game of Go. In 2011 they published a comprehensive paper
[33] proposing the algorithm MoGo and evaluating different strategies to improve the
effectiveness of MCTS in Go. Seeing that

[...] professional Go players often play moves according to intuitive feelings
that are hard to express or quantify. Precisely encoding their knowledge into
machine-understandable rules has proven to be a dead-end: a classic example
of the knowledge acquisition bottleneck. [33, p. 1873]

One of the ideas introduced is Rapid Action Value Estimation (RAVE). It was already
mentioned how one could reuse information gathered for minimax through a transpo-
sition table. In a search tree, one will encounter transpositions for that searches were
already performed. RAVE allows reusing experience gathered from simulations for re-
lated positions. A key property observed by Silver was that MoGo scales proportionally
to the amount of compute or rather the number of simulations it can perform per turn
as depicted in figure 2.5.

20 Ture Claußen

2.3 Reinforcement Learning

Figure 2.5: Elo rating of MoGo in relation to the computational resources granted to
the algorithm [33, p. 1872]

2.3 Reinforcement Learning

The methods described until this point can be described as ”Good old-fashioned AI.”
They rely on search and human knowledge to perform adequately. Now we shift our
focus to methods that use learning mechanisms to improve their play. With MCTS, we
have actually seen a kind of intermediary form of an algorithm as it is ”simulating moves
into the future, observing the outcome, and using the outcome to determine which moves
are good ones is one kind of reinforcement learning.” [22, p. 331]

We basically told our agent what to do by devising a heuristic function by indicating
how a good position looks. The agent optimized its actions to be in a good position as
described by the function. In reinforcement learning, the agent learns what action to
take through interaction. We do not predefine which actions are to be taken. The agent
tries to discover which actions yield the best reward. The numerical reward signal might
come immediately, but, e.g., in the case of chess, the reward for actions taken comes
much later by winning the game (or losing it). According to Sutton and Barto, those
are the key components of reinforcement learning: ”trial-and-error search and delayed
reward.” [21, p. 1]

Reinforcement learning is not a specific solution or method. All methods for ”goal-
directed agents interacting in an uncertain environment” [21, p. 3] are types of rein-
forcement learning. It is a general formalism that will help us reframe the problem of
playing a board game (well) in a new light.

21

2 Background Theory

Figure 2.6: The markov decision process as agent-environment interaction loop [21, cf.
p. 48]

2.3.1 Markov Decision Processes

Central to reinforcement learning is a formalism for the environment called the Markov
decision process (MDP). The MDP introduces some constraints and specifications that
are useful for making precise statements and building further theory on them. If the
constraints and properties of an MDP apply to an environment, one can resort to the
algorithms and proofs already built on the basis of MDPs. At the same time, the
constraints are so loose that many learning problems can be formulated as MDP.

The basis for the MDP is the Markov Chain. Markov Chains are used to describe se-
quential decision-making. Each decision results in a state. The transition between states
is stochastic, which means the following state depends on probability. The transition
probability does not depend on the history of previous states. It is independent.

Richard bellman extended Markov Chains by actions and rewards to derive MDPs [34,
35]. Actions cause transitions between states. They have long-term consequences, thus,
affecting future rewards. The passage of time is divided into discrete time steps t at
which the agent senses the state St ∈ S and then selects some action At ∈ A(St).
Resulting in that action is some reward Rt+1 ∈ R ⊂ R that is received in the next
timestep. This interaction is very similar to the interaction loop previously discussed in
figure 2.1. We can reframe this image with the new terminology of the MDP framework
in figure 2.6.

For a finite MDP the sets of all actions A (action space), states S (state space) and
rewards R have a finite amount of elements. The transition probabilities between the
state s and the next state s′ and its reward r ∈ R is given by the function p which
essentially defines the decision process as a whole. A game of chess is deterministic,
all transitions have a probability of 1, and the rules of the game define the possible
transitions. However, the MDP is formulated to incorporate stochastic environments as
well:

22 Ture Claußen

2.3 Reinforcement Learning

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s, At−1 = a} (2.4)

In an MDP, just as in a Markov Chain, ”the state must include information about all
aspects of the past agent environment interaction that make a difference for the future.
If it does, then the state is said to have the Markov property”. [21, p. 48] This means
the transition probability p is independent of the history of preceding states.

From these properties of the MDP, we can define the four central components of Rein-
forcement learning:

• The reward signal is the description of the agent’s goal. A cooling system
controller for a server farm might have the goal of minimizing the energy spent
for cooling while keeping the servers below a certain threshold. The reward signal
then encompasses both of these subgoals. The controller has to maximize this
reward. The reward hypothesis states that:

That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of
a received scalar signal (called reward). [21, p. 52]

Therefore, we introduce the reward Rt and the goal Gt which is in the simplest
case the sum of future rewards until the final time step T .

Gt = Rt+1 + Rt+2 + ... + RT (2.5)

We might also discount the future rewards by some factor γ ∈ [0, 1] to account for
the decrease in certainty we have about future rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑

k=0
γkRt+k+1 (2.6)

• The policy is a mapping between the perceived states to probabilities of selecting
each possible action. For TicTacToe, we might imagine a table that maps all
possible states to the agent’s action. Due to the size of the state space 3.1 in
more complex games, this would not be feasible. Therefore, we have used search
processes as a policy so far.

We denote the policy as the function π. It defines a probability distribution over
all actions a ∈ A(s) for each s ∈ S. π(a|s) is probability at a given timestep t for
the action to be a = At under the condition that s = St.

23

2 Background Theory

Figure 2.7: A visual explanation of policy, value and action-value [21, p. 62]

• The value function is an estimation of the reward for the agent to be in a given
state s. In other words, it is the expected value E for the goal Gt given the state
s. As the reward for a state depends on what actions we take in the future, the
value depends on the policy π defined above. Given that we are at timestep t and
in state s = St, the state-value function vπ is:

vπ(s) = Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(2.7)

The previously encountered heuristic function was essentially a value function used
to guide the game-tree search.

Furthermore, we define the value of action a while being in state s under the policy
π as the action-value function q:

qπ(s) = Eπ[Gt|St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
(2.8)

The figure 2.7 shows how the three elements of policy, state-value and action-value
relate to each other.

• The model helps to make predictions about how the environment might behave:
For a given state and action, it might return to the next state, which aids in
planning. In the case of Abalone, the model is the rules of the game. It could
be used by the function that returns all legal moves or the resulting board from a
given board and a move.

The goal of reinforcement learning is to find (or approximate) a policy that maximizes
the future reward for each action and state. For MDPs we define the optimal policy
π∗ as having higher or equal return than all other policies. Thus, the optimal policy
maximizes the value function, resulting in the optimal state-value function:

v∗(s) = max
π

vπ(s) (2.9)

24 Ture Claußen

2.3 Reinforcement Learning

for all s ∈ S. For instance, in chess, the goal is to find a policy that approximates the
utility returned by exhaustive search. Given such a policy, one could evaluate the best
possible outcome for any state s with the optimal state-value function.

An example will help illustrate these abstract specifications. We might view a pick-and-
place robot arm through the lens of reinforcement learning. It has the task to place
items from a pick-up location into a target area, cf. [36].

• The state space S is all possible combinations of the joint angles and velocities.

• The action space A is the amount of voltage that can be applied to each of the
motors.

• The rewards R are +100 for each successfully placed item, and −1 is rewarded
each time a unit of energy is spent.

• Lastly, the state transitions p(s′, r|s, a) might be stochastic. The motors might
have some imprecisions. An applied voltage might not always change the angle of
a joint as expected.

In this scenario, the optimal policy π∗ is to place the objects successfully with minimal
energy expenditure. As mentioned in the introduction 1, researchers have sucessfully
used RL methods to let robot arms learn, through interaction, how to pick and place
items. The fundamentals described in this chapter are taken from [21, p. 47ff.], which
goes more into detail about the details of MDPs and provides many additional examples.

2.3.2 Exploration vs. Exploitation

As the agent builds its knowledge while it is engaged in the environment, it has to weigh
exploiting the gathered knowledge for ensuring a safe short term reward or sacrificing it
for exploring other actions that might turn out to bring higher rewards in the future. To
illustrate this fundamental tradeoff in reinforcement learning, let us imagine a gambling
machine with ten levers, a 10-armed bandit. At each timestep t, we have to decide
which lever to pull, and then we receive some reward Rt. Each lever has some unchanging
(stationary) distribution over the rewards that is hidden from us. The distribution looks
like the one given in figure 2.8.

To estimate the action-value of each lever, we sum the rewards received for that lever
total-reward(a) and divide it by the number of times we’ve chosen the lever Nt(a) at
the timestep t.

Qt(a) = total-reward(a)
Nt(a)

25

2 Background Theory

Figure 2.8: The reward distributions of a 10-armed bandit [21, p. 28]

This is called the sample-average method. The simplest policy would be just always to
choose the action with the largest sample-average Qt a greedy policy.

At = argmax
a

Qt(a)

First, all action-values Qt(a) are initialized with the value 0. Initially, we might choose a
random lever, which yields a reward of 0. As all Qt are still 0, we choose another random
lever giving us a reward of 1. Then, according to the greedy policy, we repeatedly pull
this lever indefinitely. The lever has the maximum action-value. We just get stuck on
exploiting the little knowledge we have gained. We introduce a small probability ε of
choosing a different (random) action to explore other actions: With a probability of 1−ε
the agent chooses the greedy action, with a probability ε a different action.

If we continue for an infinite number of times, the sample average for each action is
guaranteed to converge to q∗. Each action is sampled enough to estimate its stationary
distribution. We might also let the ϵ decay over time to ensure we exploit the optimal
lever eventually. This shows how we have to carefully consider what knowledge we have
and how we plan to expand it further. This also indicates the difficulty that is introduced
when the problem is not stationary, which creates the necessity of continuous exploration.

26 Ture Claußen

2.4 Deep Reinforcement Learning

Figure 2.9: A fundamental shift in how we think about programming [37, cf. p. 5f.]

2.4 Deep Reinforcement Learning

As reinforcement learning is a very general framework, things like the value function v(s)
are just left as an abstract function. Many different methods build on the foundation of
MDPs and fill these abstract functions with concrete instructions. One such method is
deep RL, where the RL is combined with deep neural networks. Deep neural networks are
general function approximators. Hence, they could be used to approximate the optimal
value function v∗(s) to maximize rewards.

2.4.1 (Deep) Neural Networks

Neural networks are one specific machine learning method that has had considerable
success in the recent past. Machine learning has been a paradigm shift in how we think
about building programs. In classical development, one uses the data and predefined
rules as input for the development. It requires intricate knowledge about the problem
domain to produce the answers we want. For tasks like image classification, this is a
complicated process as it is tough to think of patterns and conditions an image has to
have to find cats in them.

In machine learning, we use the answers and the data as input to the development
process, and the rules are the output we produce. Figure 2.9 contrasts this change in
programming.

Consider any linear function of the form:

f(x) = w1x + w0,

with x, w1, w0 ∈ R. We could use this function to make predictions about one-dimensional
input data. For example, we might have a (training) dataset of living space of houses

27

2 Background Theory

Figure 2.10: (a) Data points of price versus floor space of houses for sale in Berkeley,
CA, in July 2009, along with the linear function hypothesis that minimizes
squared-error loss: y = 0.232x + 246. (b) Plot of the loss function for
various values of w0, w1. Note that the loss function is convex, with a
single global minimum. [22, p. 1251]

Figure 2.11: The fundamental idea behind neurons

in m2 X and their corresponding price Y . Each row Xi corresponds to the row Yi. We
could choose the bias w0 and the weight w1 such that the squared error for all rows i
is minimal in a process we know as linear regression. When given new data, our linear
model can make predictions of the possible prices of the houses as described in figure
2.10.

Activation function A critical component is a linear function and the activation func-
tion: Before we pass the value of the function f(x) on, we apply some function ϕ. An
activation function applied to a (linear) function is referred to as neuron. The activation
function allows us to introduce a non-linearity, which makes smaller networks of neu-
rons perform much better on more complex tasks than just a simple linear activation.
Common functions used are:

• ReLU: ϕ : max(0, f(x))

28 Ture Claußen

2.4 Deep Reinforcement Learning

Figure 2.12: A small neural network arranged in layers. An input layer, a hidden layer
and an output layer

• Sigmoid: ϕ : 1
1+ef(x)

• Binary step: ϕ :
0 f(x) < 0

1 f(x) ≥ 0

This resulting basic neuron is depicted in figure 2.11. If we want to make more complex
inferences than just the prices of houses, we can arrange multiple neurons into larger
structures like chains or layers (2.12). We need to generalize the linear function of the
neuron for higher-dimensional input to build such networks,:

yk = ϕ

 m∑
j=0

wjxj

 (2.10)

However, this poses a problem. We can find globally optimal solutions for linear neu-
rons with linear regression. However, this does not work for other activation functions.
Moreover, as the network size grows, the computational cost of these methods grows too
large. A different approach is necessary.

Loss functions In the context of linear regression the term mean squared error was
already mentioned. It is the average squared difference between the predictions and the
desired output:

MSE = 1
n

n∑
i=1

(Xi − Yi)2 (2.11)

The MSE is one type of loss function, which in general is a measure to describe the error
we seek to minimize in an optimization process.

29

2 Background Theory

(Stochastic) gradient descent and backpropagation By utilizing the loss function,
we can feed an input into the network and measure for any permutation of the weights
wi how significant the error of the network is. By measuring the loss of the training set
X, we can find out how well the current configuration of the network fits the data.

Let us go back to the problem of house price prediction. If we plot the MSE for the
weights w0 and w1 of our single neuron, the result is a parabola in figure 2.10. Ideally,
we want to walk down into the valley where the error is minimal. So for any given
combination of the weights, we have to determine which direction the downward slope
is maximal. The direction of the greatest change of a scalar function is called gradient,
which is formalized as follows:

∇f(p) =

∂f

∂x1
(p)

∂f

∂x2
(p)

...
∂f

∂xn

(p)

, where the point p is a point in the parameter (or weight) space, e.g. as depicted in
figure 2.10(b) for w0 and w1. For a single neuron we can use the methods learned in
calculus to find the respective partial derivatives ∂f

∂xi

(p). By repeatedly calculating the
gradient and updating the weights to move further in the direction of the downward
slope, we describe the algorithm of gradient descent:

Algorithm 1 Gradient descent outline [22, p. 1253]
w ← any point in the parameter space
while not converged do

for each wi in w do
wi ← wi − α

∂f

∂wi

(Loss(w))
end for

end while

The variable α for gradient descent describes the learning rate, so by how much we
update the weights. As we have to differentiate not only a single neuron but a network
of neurons, some constraints have to be defined to make derivation possible:

• All functions utilized by the neuron and the network (activation, linear combina-
tion of weights) have to be differentiable

• The network has to be a directed acyclic graph, thus, no loops etc.

30 Ture Claußen

2.4 Deep Reinforcement Learning

Using these constraints makes the neural networks one type of computational graph,
which have the convenient property of letting us find the gradients of the weights in
respect to the loss by backpropagation by essentially applying the chain rule. Figure
2.13 shows an example of a computational graph and its derivation.

(a) Functions are nodes (b) Differentiate the graph by node e

Figure 2.13: An example of a computational graph [38]

In summary, the neural network architecture describes a space of possible functions
(or programs). The training data describe the desired output of the function. The
loss function measures how much the output of the current configuration of the neural
network differs from the desired output. Gradient descent adjusts the weights of the
network in such a way that the output of the network fits the training data better:
Gradient descent searches this space of functions for one that minimizes the error. Due
to the nature of gradient descent, we are not guaranteed to find the globally optimal
program. A different architecture might define a function space with more suitable
functions than others.

2.4.2 Convolutional Neural Network

As already stated, the neural network or computational graph is not limited to one
specific type of function as long as the function can be differentiated. As shown in 2.12
in its basic form, neural networks have a n-dimensional vector as input. If we have an
input like an image, we would have to break down the information about the adjacency
to fit the form of a vector.

Furthermore, the computational requirements for such an approach would grow rapidly.
A fully connected first layer would need n2 weights for an image of the size n. A small
image of the size 256 · 256 would need 65, 536 weights for the first layer alone.

To achieve this, we can utilize convolution. In general terms, a ”convolution is an
integral that expresses the amount of overlap of one function g as it is shifted over
another function f .” [40]

31

2 Background Theory

Figure 2.14: A typical CNN architecture [39]

Figure 2.15: Convolution of a 8x8 black and white image with a 3x3 kernel, no padding
and a stride of 1. [41, cf. p. 13]

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t)dt

The definition might seem very abstract, but only the discrete case is relevant to us, and
secondly, only the finite case. This boils down the convolution to filtering F , which also
comes up in image processing (technically, this is the cross-correlation):

F (u, v) =
∑

x

∑
y

I(u + x, v + y)H(x, y)

For a given coordinate u, v each value in the matrix H (also called kernel) is multiplied by
the corresponding value of the image returned by function I. The figure 2.15 illustrates
how a convolution would look on a black and white image. In image processing, for
example, we might use a Laplacian filter to extract certain features like edges. By using
convolutions in a neural network, we move away from these hand-crafted features by

32 Ture Claußen

2.4 Deep Reinforcement Learning

letting the parameters of the kernels be trained to fit the desired outcome. The result is
a convolutional neural network (CNN) as depicted in figure 2.14. The properties (and
advantages) of CNNs are:

• By combining multiple layers of convolutions, the network can extract higher-level
abstractions of the image [42]. Moreover, this introduces sparsity between the
layers. A neuron is only connected to a part of the previous layer.

• The output of the network is equivariant to translation. This means that a pattern
found in the corner produces the same magnitude of a response as a pattern found
in the center of the image. However, the response is in a different location. [43].

The application of this method for image-related tasks has become very popular. The
first large-scale application in 2012 by Krizhevsky et al. [44] vastly outperformed any
previous methods. This approach is very relevant to the board game setting in Abalone
as each board position is essentially an image. Patterns of marbles are relevant in
different board positions, just as different shapes and objects in different places in an
image.

2.4.3 Residual Networks

By stacking many layers, a network can fit more complex domains. Their size has earned
them the name deep neural networks. However, a central issue with increasing the size
of the network is the problem of vanishing gradients. For example, as the arguments
approach −∞ and ∞, the sigmoid function is in its limit 0 and 1 respectively. The
derivative approaches 0 for both cases as depicted in figure 2.16 (a). As the derivatives
are multiplied during the backpropagation (chain rule), they become even smaller, thus
vanishing as they further approach 0 with each added layer. Hence, in backpropagation,
larger input values produce very small output values when passed through such a neuron.

(a) Sigmoid function and its derivative [45] (b) A residual block [46]

Figure 2.16: Motivation and implementation of residual networks

33

2 Background Theory

To mitigate this issue, one could use different activation functions like the ReLU or use
residual connections. In a residual (or skip) connection the value of the input before
passing through the neuron is added with some weight to the output as shown in figure
2.16(b). A residual block is comprised of a group of layers and a residual connection as
shown in figure 2.16. These units can be stacked together very ”deeply” without issues.

This section on neural networks has only touched the fundamentals of neural networks
very swiftly. Nevertheless, it shows that the core ideas are pretty simple (in hindsight,
of course), especially compared to the very comprehensive methods of classical AI. The
theoretical foundations of these methods are quite old. With the unlocking of more and
more computational power and data, researchers discovered the ”unreasonable effective-
ness of data” [47] in combination with neural networks and gradient descent. To dive
deeper, the book ”Artificial Intelligence: A Modern Approach” [22] offers an excellent
first impression.

2.4.4 AlphaGo

All the components we introduced so far constitute the knowledge necessary to under-
stand AlphaGo and AlphaZero. Go was invented 2,500 years ago in China, making it
likely ”the oldest continuously played board game” [48]. The complexity of Go’s state
space and search space surpasses that of chess significantly (cf. table 3.1). At the time
when there was much success in other games with minimax, many people saw Go as the
most challenging board game [49]. The only successful method was MCTS, for which
we already saw two influential papers in the context of Go by David Silver.

By combining the reinforcement learning framework with MCTS and neural networks,
David Silver et al. achieved the milestone of beating Lee Sedol. The program AlphaGo
consists of three key components:

1. A rollout policy network pπ and a policy network pσ trained by supervised learning

2. A policy network pρ trained with reinforcement learning and a value network vθ

derived from pρ

3. Look-ahead search using (asynchronous) Monte Carlo Tree Search guided by pσ

and vθ. The rollouts for the search are performed by the rollout network pπ.

The first step is the supervised training based on the KGS Go Server dataset of 30
million positions [50, p. 485]. The rollout policy network pπ is a relatively small network
that is supposed to provide quick rollouts (simulations). The policy network is necessary
because random rollouts for such complex games can produce very weak guidance for low
numbers and also very long matches. This is supported by comparisons made between

34 Ture Claußen

2.4 Deep Reinforcement Learning

Figure 2.17: Comparison prediction quality of the different components [50]

the prediction quality of 100 rollouts with a uniformly random policy versus with the
network pπ in figure 2.17.

The policy network pσ is trained in the same fashion, except it is larger in size and thus
is computationally more expensive. The policy network pσ is used for the next step.
The goal is to adjust ”the policy towards the correct goal of winning games, rather than
to maximize predictive accuracy” [50, p.484] by using policy gradient RL and self-play.
Initially, the network pρ is initialized with structure and weights equivalent to pσ. Then
games with the current version of the policy network pp are played against random
previous versions of the network. At time step t, for a mini-batch of n games, the results
of the games are taken, and the REINFORCE algorithm [51] is used to fit the weights
of the networks to the outcome of the game zt. The newly trained policy network pρ

wins 80% of the games against pσ [50, p. 485].

Lastly, pρ is used to train a neural network with weights θ for the evaluation function
vθ(s). This evaluation function approaches the state-value function vpρ(s), so the ex-
pected outcome of the game given the policy pρ: vθ(s) ≈ vpρ(s). Figure 2.17 shows how
vθ approaches the same prediction accuracy as doing 15,000 rollouts with policy pρ.

During live play against an opponent, AlphaGo uses MCTS search. The search has
performance versus just using the pure output of the policy network. The edges, or the
pairs (s, a) of state s and action a, of the search tree store an action value Q(s, a), a
visit count N(s, a) and a prior probability P (s, a) (cf. figure 2.18).

• During the selection phase the next child is selected by taking the action with
maximum action value. To encourage exploration in the beginning an additional
term u(s, a) is added to the action value Q. Each step t during selection an action
is selected by:

at = argmax
a

(Q(st, a) + u(st, a)) (2.12)

with u(st, a) being a variant of the PUCT algorithm [52]. Just like the UCB1 2.3 it
encourages exploration in the beginning and then increasingly prefers moves with
high action value.

35

2 Background Theory

Figure 2.18: Monte Carlo Tree Search in AlphaGo. [50] Note the algorithm structure
mentioned in figure 2.4 is maintained, but selection and simulation is more
advanced

• When a leaf node is reached at timestep T , the state sT is expanded by the
policy network pσ (Note that pσ is being used instead of pρ, empirical analysis by
the team showed this performs better). The resulting probability distribution over
the actions is stored as prior probabilities: P (sT , a) = p(a|sT).

• The evaluation of the leaf node sL is done by combining the evaluation function
vθ and the results of the rollouts zL played with the rollout network pπ. Both
elements are weighted by a mixing parameter λ:

V (sL) = (1− λ)vθ(sL) + λzL (2.13)

• Lastly, after each simulation the results are backpropagated through all visited
edges of the root node. The count N(s, a) is incremented and Q(s, a) is updated
by:

Q(s, a) = 1
N(s, a)

n∑
i=1

1(s, a, i)V (si
L) (2.14)

where n is the number of simulations ”si
L is the leaf node from the ith simulation,

and 1(s, a, i) indicates whether the edge was traversed during the ith simulation”
[50, p. 529]. The action values stored on the edges of the search tree are the
average of all evaluations of the child nodes.

The computational requirements for AlphaGo are significant. During training, the team
utilized 50 GPUs. The supervised learning stage ran for three weeks regardless. They
utilized a machine with 48 CPUs and 8 GPUs during live play. A distributed variant
with 1,202 CPUs and 176 GPUs was tested as well.

The nature article ”Mastering the game of Go with deep neural networks and tree search”
provides a more detailed introduction to the topic. [50]

36 Ture Claußen

2.4 Deep Reinforcement Learning

2.4.5 AlphaZero

A problem with AlphaGo’s architecture is its complexity. There are many hyperpa-
rameters for the four different neural networks and many other moving parts. In a first
step, DeepMind simplified AlphaGo to AlphaGo Zero, which conveniently performs even
better. In the next step, the architecture was adapted to fit other games like chess and
shogi as well, called AlphaZero [53]. We will stick with Go to illustrate the concept but
refer to the algorithm as AlphaZero, even though it is imprecise.

AlphaZero learns ”tabula rasa” from a blank slate. Essentially, AlphaZero only uses a
modified version of the self-play RL mechanism from AlphaGo. All other parts from the
training pipeline are scrapped. The two main components of AlphaZero are:

1. A single neural network fθ. Compared to AlphaGo, the neural network’s architec-
ture has been simplified by combining the value network and the policy network
into one network with two heads. The network is only trained through self-play.

2. A simplified version of AlphaGo’s MCTS, that does not use rollouts and only relies
on the network fθ to guide the search. The MCTS variant is not only used for live
play but also self-play.

The network fθ takes the current board state and the last seven boards as input. The
position of the player’s marbles is split into separate planes, 1 for a placed stone and 0
if there is none. Additionally, one feature plane indicates the player in turn, which is set
to 1 for black’s turn and 0 for white’s turn. A total of 17 planes forms an input stack of
the size 19 · 19 · 17.

As shown by figure 2.19 (a), the network is divided into four types of blocks:

• The residual blocks arranged in the residual tower hold the main chunk of trainable
parameters. Two sizes for the residual tower were tested, 19 and 39 blocks. The
variant with 19 blocks performed better.

• The single convolutional block is composed of the same layers as the residual block,
just without the skip connection.

• The value head outputs a scalar representing the value function.

• The policy head returns a probability distribution over all possible moves.

The team showed empirically [6, p. 9] that this dueling-network [54] architecture works
significantly better for Go than other architectures. A dueling-network, as depicted in
figure 2.21, has two ”heads” for the state-value function and the actions or policy. Both
heads share the underlying model layers. This improved performance for Atari-playing
algorithms [54, p. 7] and also performed better than separate networks in AlphaGo Zero
[6, p. 9].

37

2 Background Theory

Figure 2.19: The general architecture of the network fθ [6, cf. p. 27ff.]

38 Ture Claußen

2.4 Deep Reinforcement Learning

(a) The layers of a residual
block

(b) The layers of the
value head

(c) The layers of the
value head

Figure 2.20: The blocks of the neural network in detail, [6, cf. p. 27ff.]

At the start of training, the network is initialized with random weights. Each turn t
during self-play, fθ guides a MCTS, which produces a probability distribution πt over
all (legal) moves. The move at is selected according to the probabilities π. So instead of
using the network fθ directly to decide on the next move, MCTS produces an improved
policy through repeated application of fθ. The authors describe MCTS in this context
as a policy improvement operator. The self-play games are played until a terminal state

39

2 Background Theory

Figure 2.21: A comparison of a ”single-stream” network (top) and a dueling network
(bottom) [54]

(a) The self-play (b) The training step with experience (si, πi, z) from
self-play

Figure 2.22: The self-play training pipeline of AlphaZero [6, p. 5]

sT is reached. The result of the game zT ∈ {−1, +1} is recorded for either a loss or a
win. For each move during the game, the game’s result zt is recorded. Together with
the board state st and the search probabilities πt a tuple for one piece of experience is
formed: (st, πt, zt). zt ∓ zT depends on the player’s perspective who is in turn. The
self-play is illustrated in figure 2.22 (a).

This tuple is stored in an experience buffer used for training the next iteration of the
network. In each iteration, mini-batches are sampled from the experience buffer. The
network is fitted to match the probabilities πt with the policy head and the game result
zt with the value head. The newly trained network is compared to the current best
network in 400 games. If the new network wins more than a threshold of 55% of games,
it is accepted. Self-play is performed with the new network from that point on. In total,

40 Ture Claußen

2.4 Deep Reinforcement Learning

Figure 2.23: ”Policy iteration consists of two simultaneous, interacting processes, one
making the value function consistent with the current policy (policy evalu-
ation), and the other making the policy greedy with respect to the current
value function (policy improvement)” [21, 86]

700, 000 mini-batches of size 2, 048 from 4.9 million games were sampled [6, p. 6].

To summarize, the self-play of AlphaZero uses the much stronger search policy generated
by MCTS and improves the neural network by fitting the policy head to this search
policy. The authors describe this as a projection of the search policy ”back into the
function space of the neural network” [6, p. 19]. Using the games’ results, the search
policy is evaluated, and the value head is fitted to match that evaluation. This procedure
is an approximate variant of the dynamic programming method policy iteration which
is depicted in figure 2.23.

The MCTS is very similar to the previous version in AlphaGo:

• During the selection phase, an action at is selected that has maximum action value
and CPUCT until a leaf node sL is reached.

• The network fθ is evaluated, and the probabilities P (sL, a) are stored.

• Only the evaluation v is backed up. No rollouts are performed. The action values
of the parent nodes are updated to the mean value of all v for that node.

The visit counts N(s0, a) in relation to the sum of all visits to other nodes is used to
select the next move. The more a move was selected from the root node s0, the better
the network deemed the move and the following positions. A temperature parameter
τ is considered to further incentivize exploration during the first moves of the self-play
games:

π(a|s0) = N(s0, a) 1
τ∑

b N(s0, b) 1
τ

(2.15)

41

2 Background Theory

As τ approaches 0, the move with the maximum number is selected deterministically,
and if τ = 1, other moves are selected proportional to their probability. For self-play,
τ was set to 1 for the first 30 moves and τ → 0 for the rest of a game and during the
matches of the new and the current best network.

42 Ture Claußen

3 Abalone

Abalone was devised by Michel Lalet and Laurent Lévi. Even though it was created
fairly recently, more than four million global sales have established Abalone as a classic
game [55].

3.1 Rules

(a) Starting position (b) ”In-line” moves (c) ”Side-step” moves

Figure 3.1: Basic moves [56]

In the classical variant, each player places 14 marbles on opposing sides. Figure 3.1
(a) depicts the game’s default starting position. Other starting positions like ”German
daisy” and ”Belgian daisy” and four-player variants will not be considered. The player
may move one, two, or three adjacent marbles in one of the six possible directions. The
marbles have to move in the same direction and only move to a neighboring field. We
differentiate between broadside or ”side-step” moves and ”in-line” moves, depending on
how the chain of marbles moves relative to its direction. The difference is shown in
figure 3.1 (b) and (c).

A move pushing the opponent’s marbles is called ”sumito” and comes in three variations,
as shown by figure 3.2. Essentially, the player has to push with superior numbers.

A sumito might be blocked by other marbles, as shown in figure 3.3 (a). In 1) the sumito
by black is blocked by the black marble, in 2) there is a free space between the marbles,
and 3) shows how a side-step cannot push a marble. Sumito moves are the only moves

43

3 Abalone

(a) ”2-push-1” sumito (b) ”3-push-1” sumito (c) ”3-push-2” sumito

Figure 3.2: Sumito positions allow pushing the opponent’s marbles [56]

(a) Different blocking situa-
tions

(b) Attacking position (c) No legal move available to
black

Figure 3.3: Additional relevant board positions [56]

that allow for pushing the enemy’s marbles. Therefore, they are the only attacking
moves. Figure 3.3 (b) shows a situation in which we can push an enemy marble from
the board. The player that pushes six of the opponent’s marbles from the board has
won. The basic ruleset does not account for a draw, but there are, in theory, positions
like a stalemate in chess, where no move is possible for one player. In figure 3.3 (c), the
black player is locked to the brink of the board and has no move available. Moreover,
to force a more eventful game, games are often limited by time or the number of moves.
Thus, a draw might occur when the number of marbles left on the board is equal for
each player.

3.2 Task Environment

Based on the PEAS framework, we can specify Abalone as a task environment and show
the key components for the implementation of our agent. [22, p.107]

Performance measure Win/loss, number of moves, time to deliberate

Environment Digital playing board and rules of the game

Actuators Move marbles

Sensors Position of marbles

44 Ture Claußen

3.3 Board Representations

Using the environment properties learned in 2.1.2 we can classify Abalone as a fully
observable, deterministic, two-agent, competitive, sequential, static, and dis-
crete environment. Another popular term for this type of environment is a determin-
istic two-player turn-based perfect information zero-sum game.

3.3 Board Representations

There are multiple possible coordinate systems for the hexagonal boards to address
the marble positions universally. In Abalone, the most common way is to label the
rows alphabetically from A-I starting at the bottom row. The ”columns” are labeled
numerically from 1-9 as depicted in figure 3.4 (a).

Cube coordinates, as proposed by Patel [57], are a convenient way to represent hexagonal
boards. The idea is to imagine a cube with a cartesian coordinate system originating
from its center. At x+y +z = 0 a diagonal plane is sliced out resulting in the coordinate
system represented in figure 3.4 (b). It allows for the simpler application of a wide
variety of formulas and algorithms like Manhattan distance, accessing neighbors, or
finding paths to the hexagonal board. Later, the cube coordinates will be utilized to
calculate heuristics and create symmetrical boards.

(a) The most common coordinate system for
Abalone

(b) The cube coordinate system [57]

Figure 3.4: Different possibilities for addressing the fields of Abalone

A different representation is advantageous to store the board state in a program or
feed it to a neural network: Transforming the board into a two-dimensional array of
integers. The players’ marbles are represented as 1 for black, −1 for white, and 0 for a
space. As suggested by ”towzeur” [58], shifting the upper part of the board to the right

45

3 Abalone

creates an orthogonal basis. Therefore, the adjacency of the original hexagonal board is
maintained.

Figure 3.5: The matrix representation (the 0 values for the corners of the matrix are
ignored, for better visibility)

3.4 Move Notation

There is no officially standardized notation for the moves of Abalone. The notation
described by Aichholzer [59] has wide adoption in the papers investigated. To contribute
to the proliferation of standards [60] we used a different notation that stems from the
Abalone engine Abalone-BoAI [61].

Inline moves have the structure of ”{MarbleCoordinate}{Direction}” and broadside
moves the structure of ”{MarbleCoordinate}{MarbleCoordinate}{Direction}”. Addi-
tionally, the marble coordinates are ordered for broadside moves. The marble coordi-
nates have the form outlined in figure 3.4 (a). The directions are always seen from the
black player’s starting position, north pointing straight in the direction of the white
player (default position). This is the main difference to the notation described by Aich-
holzer, who uses a destination coordinate instead of a direction. The direction improves
the readability and understandability of moves. The six directions are arranged just as
in a compass: N for north, NW for the northwest, etc. As follows, the regex for the
notation:

([A-I][1-9]){1}([A-I][1-9]){0,1}((NE)|(E)|(SE)|(SE)|(SW)|(W)|(NW)){1}

For example, an in-line move with the marble at A1 as trailing marble in the direction
north-east would be denoted as A1NE. A broadside move of a row of marbles from C3
until C5 in the northwest direction would be denoted as C3C5NW.

46 Ture Claußen

3.5 Symmetries

(a) Mirror axes (b) Rotations

Figure 3.6: The symmetries of the Abalone board

3.5 Symmetries

The board of Abalone has six rotational symmetries and additional six mirror axes.
There are three main axes q, r, s that represent the coordinate basis shown in figure 3.4
(b). Each of these has an additional orthogonal axis resulting in six distinct axes.

The rotations depicted in figure 3.6 each describe a rotation by 60° clockwise.

3.6 Complexity

As Abalone has a finite amount of discrete states, we can make precise statements about
its complexity, which one can describe in two relevant dimensions.

State space complexity The state space is the set of all possible states ”the environ-
ment can be in.” [22, p. 150] For Abalone, this means we have to consider all possible
board configurations with different numbers of marbles present. Additionally, duplicates
that arise from the symmetries of the board have to be removed. The following formula
gives us a good upper bound:

14∑
k=8

14∑
m=9

61!
k!(61− k)! ·

(61− k)!
m!((61− k)−m)! (3.1)

47

3 Abalone

Figure 3.7: Counts of moves available a random player in 5 games

Game state-space complexity (log) game-tree complexity (log)
Tic-tac-toe 3 5

Reversi 28 58
Chess 46 123

Abalone 24 154
Go 172 360

Table 3.1: Abalone in comparison with other games [63]

Due to the board’s symmetries,the results have to be divided by 12 which results in a
total of 6 · 1023 possible board configurations. [62, p. 4]

Game tree complexity Abalone’s game tree is unbound and has an infinite height as
actions might be taken repeatedly, forming loops. Therefore, Abalone’s complexity is
not determined by the game tree but is approximated by an average search tree. First,
we consider the branching factor b, or the number of possible moves for any given state.
This number greatly varies between different states. On average Abalone has b = 60
possible moves per state as measured in figure 3.7. The depth d of the tree depends on
the number of turns per game. The average game takes approximately d = 87 turns.
The number of nodes in a tree gives a measure of the complexity:

bd (3.2)

resulting in a total of 6087 ≈ 5 · 10154 nodes. [62]

As those numbers in isolation are hard to grasp, it is helpful to put Abalone’s complexity
in relation to other popular games. Its state-space complexity is on the same level as
Reversi, whilst its game tree surpasses chess in complexity (c.f. table 3.1)

48 Ture Claußen

3.7 Existing Game-Playing Agents

3.7 Existing Game-Playing Agents

3.7.1 Minimax

For all the previously discussed methods, game-playing agents based on minimax have
been the most successful so far. Heuristic functions are quite similar to those mentioned
for chess. Some of the more significant game situations optimized for are:

• Adjacency: As a majority of marbles is required to push the opponent’s marbles
and conversely an equal amount of marbles is needed to avoid being pushed, it can
be assumed that keeping one’s marbles grouped together is a good move.

• Distance to center: Marbles that are close to the brink of the board put them into
danger of being attacked, wherefore it is generally good to place all of the marbles
into the center of the board. For each player’s marbles, we measure their distance
from the center of the board as the smallest amount of moves it would take to
reach the center (Manhattan distance).

• Number of marbles, formation break, single and double marble capturing danger,
... [64, p. 64]

There are multiple implementations of minimax for Abalone [63, 62, 65, 66], but software
is only openly available for ABA-PRO by Tino Werner from 2002 [67]. There are a few
mentions of (commercial) Abalone programs like RandomAba (Random Soft), AliAba,
AbaloneNet mentioned by Lemmens [62, p. 7], but those have not been attainable
through the internet. Even though ABA-PRO was not the strongest algorithm at the
time, its availability has made it a frequent benchmark for other papers. Aside from
previously mentioned optimizations for minimax like alpha-beta pruning, these programs
use more advanced techniques like quiescence search, aspiration windows, and combined
move ordering. A more recent publication from 2012 by Papadopoulos et al. claimed
to have devised a more successful player. [64] Those claims could not be confirmed
entirely in a recent reimplementation thesis by Michiel Verloop as Papadopoulos’ does
not describe the weights for the heuristic [68]. This reimplementation in Java [69] is also
the reference for later benchmarks as it is open source [69] and thus allows programmatic
interaction.

3.7.2 MCTS

The investigations into MCTS in the context of Abalone are pretty limited so far. Pascal
Chorus has undertaken a comparison of the vanilla implementation against a heuristic
agent, showing the dominance of the heuristic agent. [63] While in games like Go, we
don’t have loops in Abalone, random players can get stuck in very long games making

49

3 Abalone

the results of simulations fragile signals. This approach does not work very well without
a more sophisticated rollout policy.

3.7.3 Reinforcement Learning

”Abalearn” was the first learning-based approach to playing Abalone. [70] It was created
in 2003 based on temporal difference learning (TD-learning), which is a reinforcement
learning method. In the years before, TD-learning had been very successful for backgam-
mon (”TD-Gammon”) [71] and for Abalone, the authors achieved to draw ABA-PRO up
to a search depth of five. An interesting feature of their approach is that they exclusively
used self-play to train the algorithm. Moreover, they introduced a tunable mechanism
for making the risk sensitivity of the algorithm dealing with the problem of the agent
playing very passively or getting stuck in loops. Modern reinforcement learning methods
like Q-learning have only been considered in a smaller project that achieved better than
random performance. [72]

50 Ture Claußen

4 System Architecture

Well equipped with all the essential theoretical tools that we need, we can move on to
implementing them for the game of Abalone. The first logical step would be to look
at the existing software landscape to decide if we can utilize existing tools to speed up
development.

4.1 Software

4.1.1 Deep Learning Library

Deep learning projects share many components. Most commonly, that is the declara-
tion of the computational graph and the training of the graph. The libraries provide
those components and bring significant optimizations and specialized code for hardware
acceleration. Therefore, it is imperative to decide on a suitable library to speed up
development by several orders of magnitude.

The most relevant libraries are Facebook’s PyTorch and Google’s TensorFlow. Aside
from all differences between both libraries, the choice was guided by two practical rea-
sons. Initially, we selected TensorFlow due to the included support for TPUs as Google
granted this project free access to their Research Cloud [73]. At a later stage, it became
clear that Google was unwilling to increase the CPU quota for the account, limiting the
server to 8 cores which posed a significant problem for parallel execution.

In table 4.2 there is also a significant performance difference in the evaluation with
the neural network (inference) during the MCTS. There are two ways in TensorFlow
to perform inference, either through the predict function or by calling the call
method of the model itself. The states fed to the neural network are not batched in the
implementation. The inference is made for individual board states. The usage of the
latter option is faster [74]. Nevertheless, when using the GPU, PyTorch is about five
times faster, as shown in table 4.2. As discussed later, this is the reason to pivot to
PyTorch as a library.

51

4 System Architecture

HW Framework Neural net size predict(s) call (s)
CPU tf small 0.027s 0.011s
GPU tf small 0.024s 0.005s
CPU tf large 0.027s 0.015s
GPU tf large 0.025s 0.011s

Table 4.1: The average time (n = 3, 000) taken to perform the feed-forward through the
network for state s with either (predict(s)) or (call (s)) in tensorflow

HW Framework Neural net size predict(s) search(s)
CPU tf small 0.01s 0.016s
GPU tf small 0.005s 0.011s
CPU tf large 0.014s 0.02s
GPU tf large 0.011s 0.017s
CPU PyTorch small 0.005s 0.011s
GPU PyTorch small 0.001s 0.007s
CPU PyTorch large 0.005s 0.011s
GPU PyTorch large 0.002s 0.008s

Table 4.2: The average time (n = 3, 000) taken to perform the feed-forward through the
network for state s (predict(s)) and one iteration of MCTS (search(s))

52 Ture Claußen

4.1 Software

Criterion AlphaZero General Deep MCTS
Parallel training 0 1
Parallel search 0 0

ML library agnostic 1 0
Game library agnostic 1 1
Verified performance 1 0

Simplicity 1 0
Sum 4 2

Table 4.3: A comparison of existing AlphaZero frameworks

4.1.2 Training Framework

Existing frameworks have implemented the system described in the AlphaZero paper
in a more general and adaptable fashion. It has to be considered building on their
foundation:

• AlphaZero General is a framework developed as a university project at Stanford
originally for the game of Hex and Othello. [75, 76].

• Deep MCTS is a framework developed in the context of a Master’s thesis [41, 77].

We considered a catalog of criteria to compare both options. Parallel training and
parallel search measure whether the software implements the parallel training pipeline
and MCTS-APV proposed by the AlphaZero paper. Moreover, we checked whether the
frameworks are agnostic to the game and ML library. Lastly, it is relevant to investigate
whether other users could verify the performance.

As shown by table 4.3, the winner by those criteria is AlphaZero General. The core
advantages of the library are its simplicity and popularity. Deep MCTS makes use of a
lot of abstractions and generics, which makes the code more professional and reusable.
Nevertheless, this also poses significant difficulties in understanding. The application of
AlphaZero General to multiple other games like Gobang, Santorini, Connect4, and more
has shown its performance. The major drawback is the lack of a parallelized training
pipeline.

4.1.3 Game Engine

There are multiple relevant implementations of game engines for Abalone. As the inter-
facing language for PyTorch is Python, it makes sense to restrict the engines to Python:

53

4 System Architecture

Figure 4.1: The inter process communication between the python game engine and the
Java implementation of ABA-PRO

• Abalone-BoAI is a game engine specifically designed for interfacing with compu-
tational agents. It is straightforward and has been used for the precursor project
of this thesis [61].

• Gym-abalone is tightly integrated with OpenAI’s gym [78], potentially allowing
agents to play other games as well. The API is suited for the reinforcement learning
setting [58].

Two arguments lead to the decision of choosing Abalone-BOAI:

1. We already optimized it in a previous project [79], like the generation of legal
moves.

2. AlphaZero General expects the game engine to be designed in a functional way.
The API of the engine needs to be adapted to fit the interface of the training
framework. Both engines are stateful, meaning that they rely on the class instance
context to perform moves, check for legal moves, and other operations. For in-
stance, the operations are supposed to be applied to the input matrix, and the
modified matrix is then returned. Therefore, intricate knowledge of the engine is
of advantage.

Due to those necessary modifications, we forked the original game engine to allow for
more accessible packaging [80].

As mentioned in the section 3.7, Verloop’s reimplementation [69] offers the simplest
solution for interfacing with (one of) the strongest Abalone algorithms. In a small
tournament, personal implementations of minimax in Python [79] were inferior. As the
Java implementation is tightly coupled with the internal game engine, we decided to
implement a proxy player for each game engine. Each engine is a separate process, and
the proxy players relay the moves between the engines. The proxy players communicate
through a named pipe as depicted in figure 4.1. The downside of this solution is the
need to synchronize two separate game states and translate between the different move

54 Ture Claußen

4.2 Neural Network

notations. We used the notation introduced in section 3.4 to serialize the moves and
added a translation function to convert the intermediary notation to the internal format.

4.2 Neural Network

4.2.1 Dimensions

In order to apply the neural network architecture proposed by AlphaZero (cf. figure
2.19), two dimensions need to be changed:

1. The input tensor of size 19 · 19 · 17 needs to be adjusted to fit the dimensions
of the hexagonal board. The hexagonal board is transformed into an orthogonal
base as shown in 3.5 such that it can be represented as a 9 · 9 matrix. The third
dimension of size 17 can be reduced to 1 by removing the move history and only
passing the current state. As mentioned in section 3, the official rules do not
prohibit repetitions. Adding logic to checking move sequences against the history
would have introduced too much complexity, and we would have had to change
the function signatures of the framework.

AlphaGo Zero represented the position of the players’ pieces on separate planes.
By representing the state as proposed in 3.3, there are no separate planes necessary.
Additionally, the board is always passed in its canonical form to the network. The
board states are always seen from black’s perspective. If it is the black player’s
turn, the board remains unchanged. If it is white’s turn, the board’s colors are
switched. From the perspective of the neural network, white (−1) is always the
opponent. The in-turn player is represented as 1 and −1 for black and white.
The matrix values can be multiplied with the in-turn player value to create the
canonical form.

2. AlphaZero’s output vector π of size 361 represents all possible positions a piece
can be placed on the board. As Abalone has a much more complex move system,
the size of this vector needs to match the number of all possible moves. We
found the number of all possible moves by generating all moves programmatically.
The generated moves were stored in a bijective map. Each move is assigned to
precisely one index in π, and each index is assigned exactly one move. The move
is represented as a string in the proposed notation above. Therefore, using the
bijective map, a move’s index can be found by its string representation and vice
versa.

As depicted in figure 4.2, the inline moves are generated by iterating over all fields
of the board. For each field, all directions are tested for being a valid move. If

55

4 System Architecture

Figure 4.2: Generation of inline moves, starting at position A1 and direction NE

that is the case, we check if the move is present in the bijective map. If not, the
move is assigned the next index in pi and added to the map.

Figure 4.3 shows the generation of the broadside moves. The algorithm iterates
each field. Marble lines of length two and three are generated in each field’s
(possible) directions. For each line, broadside moves in all directions are checked
for validity as the move might be out of bounds. The movement direction of the
marble line direction is ignored.

The resulting vector π has a length of 1452.

4.2.2 Architecture

We implemented the neural network architecture of AlphaGo Zero in PyTorch with the
help of Brůasdal’s implementation. We used a residual tower height of five (cf. section
4.2.2) which has 5, 911, 127 trainable parameters. It will be referred to as ”large.”

Additionally, we tested the simplified neural network proposed in the implementation of
Thakoor [76], which is less deep but still offers 21, 470, 125 trainable parameters. It will
be referred to as ”mini.”

56 Ture Claußen

4.2 Neural Network

Figure 4.3: Generation of broadside moves starting at position A1, line direction NE,
line length of two and at move direction NE

57

4 System Architecture

Figure 4.4: The neural network used in AlphaZero General [76]

58 Ture Claußen

4.3 Training Pipeline

4.3 Training Pipeline

4.3.1 Components

The training pipeline of AlphaZero General has five main components:

1. Coach: The main module that orchestrates the training process.

2. Game: Provides an abstract interface that generalizes to many types of board
games. Functions like the generation of legal moves, creating a unique string
representation of the board, and other functions need to be implemented.

3. Neural Net: Is a wrapper for any neural network. It needs to be implemented
for the specific framework used.

4. MCTS: Encapsulates the logic to perform Monte Carlo Tree Search on the game
tree with the help of the neural network and the Game module.

5. Arena: Has the task to perform the matches between different agents.

We not only parallelized the framework, as explained in section 4.3.3, but also made
multiple other modifications:

• The Arena was modified to use the Abalone engine [79] and game-playing agents
implemented for that engine. This way, the neural nets can be faced off against
other algorithms like Verloop’s minimax.

• Moreover, the MCTS implementation could not deal with games with board states
appearing multiple times in the search tree. The implementation uses hash maps
to retrieve the action-values and counts for a board state. If the board state exists
multiple times in the search tree, the values are skewed. We extended the hash of
a state by a hash of the parent node’s hash and the current depth of the node to
solve the problem.

• Lastly, the Arena was parallelized because the matches with a random agent or a
previous version require a more significant number of games to get a statistically
relevant result. As discussed in section 4.3.3, the significant length of a game would
slow down the training process too much.

Additionally, we added a CLI entry point to pass arguments to the training process. All
relevant hyperparameters (cf. section 5.2) of a training run are persisted in a JSON file.
Performance data (such as time per iteration) and the Arena results are logged as CSV
tables.

59

4 System Architecture

4.3.2 Training Algorithm

Even though we will alter the main training routine later to be executed in parallel,
the logic remains quite similar to the original algorithm devised in AlphaZero General.
Therefore, it makes sense to describe the coarse structure that is also outlined in figure
4.5.

The outer loop defines how many iterations of self-play and subsequent neural network
training should be performed. At the beginning of each iteration, a predefined number
of games (episodes) is supposed to be played.

In each episode, an MCTS is performed with the defined number of simulations. The
temperature parameter τ determines the exploration. Either a move is selected with
a probability proportional to the visit count, or the move with the highest count is
selected. The move is applied to the board state. After switching the sides, it is checked
whether a terminal state was reached. If not, the game is continued. Otherwise, the
reward r is calculated. With r, the list of experiences (s, π, z) is generated, with z being
the reward r from the player’s perspective in turn.

After the desired number of games has been played, the new experience is appended
to the experience buffer. Moreover, the buffer is stored as a checkpoint. If the buffer
exceeds a defined length, the oldest experience is removed. Then a new version of the
network fθ is trained and played against the previous version in the Arena. If the new
network performs better than the previous version, it is stored on disk for checkpointing.
Otherwise, the network is discarded. The training is then continued until the desired
number of iterations is reached, or the training is aborted.

60 Ture Claußen

4.3 Training Pipeline

(a) The main loop of the training al-
gorithm

(b) The episode loop

Figure 4.5: The self-play training pipeline

61

4 System Architecture

4.3.3 Parallelization

AlphaZero General’s training pipeline does not offer parallel training. By comparing the
time taken to execute one episode for the game of Othello and Abalone, it showed that
a game of Abalone takes on average 40 times (tested for n = 100) longer to finish: 1s
for Othello and 40s for Abalone. Investigating potential improvements, it became clear
that two major factors determine the runtime of an episode:

1. Length of the game. A game of Abalone takes significantly more turns, caused by
rules not forbidding loops such that games can be infinite. Moreover, defensive play
styles can draw out games significantly. In order to alleviate the issue, we limited the
number of turns m per game. In this case, the length was limited to m = 200. The
newly created terminal state is scored with a partial score: The scored marbles are
subtracted by the opponent’s score for each player. We scored win or loss as either 1 or
−1. Hence, the partial score is normalized by the number of marbles needed to win. The
partial score reflects which player had the upper hand at the artificial terminal state.
For instance, the black player pushed three marbles off the board, the white player only
one. From black’s perspective the partial score is 3

6 −
1
6 = 1

3 , for white it is 1
6 −

3
6 = −1

3 .

2. The MCTS being computationally expensive: A closer inspection of the execution
time, holding all variables constant, demonstrates the culprit. The simulation step of
MCTS uses the neural network. The time taken by this function is one order of magni-
tude larger than the second most expensive operation, which is the generation of legal
moves. For example, when running 15 MCTS iterations with the original TensorFlow
implementation, one turn takes

• Total time: 0.44s

• One MCTS iteration: 0.03s

• Neural network : 0.025s

• Valid move generation: 0.05s

Looking at the main variables that control the length of the nested loops, it becomes
clear that reducing the time an MCTS iteration takes is essential. Assuming function f
is the operation to perform one Monte Carlo simulation:

k := number of games
m := number of turns per game

n := number of MCTS simulations
f ∈ O(kmn)

62 Ture Claußen

4.3 Training Pipeline

Abalone requires a larger number of MCTS simulations. The other projects [41, 75]
used only 30 iterations for Othello and Hex, but Abalone has a much more complex
game tree. AlphaZero performs 1, 600 iterations [6, p. 11] for each move. The MCTS
needs to recommend a better move than the pure network to improve. It is the policy
improvement operator. Those properties were the reason to decide to use PyTorch rather
than TensorFlow. The library brings a 5-times improvement for that step as shown in
4.2. Nevertheless, this only brings down execution time for one episode by a factor of
5, still being 8-times slower than the reference implementation for Othello. AlphaZero
uses two ways to alleviate this problem:

• Parallelization of the self-play training

• Parallelization of the MCTS (APV-MCTS)

As Python’s global interpreter lock [81] does not allow for true multithreading, par-
allelizing the MCTS poses significant complexity and difficulty. However, allowing for
simultaneous self-play and neural network training is feasible. As already mentioned
in section 4.1.2, the implementation by Brůasdal [41] provides this feature. For that
reason, its architecture is used as a blueprint for migrating AlphaZero General into a
parallel architecture. The figure 4.6 depicts how the components mentioned interact in
a parallel fashion.

The self-play workers use the current best neural network fθ to generate experience. The
experience is put into a queue to allow for asynchronous communication between the
worker processes and the Coach. The queue is emptied and loaded into the replay buffer
for each neural network training iteration. If the experience buffer exceeds the maximum
size, the oldest experience is dropped. The number of training batches is defined by the
batch size and buffer size (buffer size divided by batch size). The training batches are
created by randomly sampling tuples (s, π, z) from the buffer. No tuple is used twice so
that the entire buffer is utilized.

After training the neural network with the batches, the newly created network is pitted
against the old version in the Arena. As both variants have to be pitted against each
other multiple times, we parallelized the Arena. If the new network is stronger than
the previous version, it is saved on disk. Then the version counter is incremented. The
version counter is a shared variable between the workers and the Coach. After each
completed self-play game, the worker checks if the version counter is larger than its
stored version. If that is the case, the new network is loaded from disk.

An important factor is to balance the number of workers against the time it takes to
train the neural network. If the buffer grows large, training takes a long time. In
the meantime, much new experience is potentially generated, overriding all previous
experience. As a result, all experience is only generated from one network. The training
process might become less robust.

63

4 System Architecture

Figure 4.6: The different processes during the parallel training [41, cf. p. 45]

4.3.4 Distribution

The table 4.2 shows that the usage of a GPU accelerates the inference speed significantly,
particularly for PyTorch. Ergo, accelerating the self-play is highly desirable. When
multiple processes utilize a GPU, each process requires a portion of the card’s memory.
PyTorch has the feature to share a model between multiple processes, wherefore a model
does not need to be fully loaded for each process [82]. However, in PyTorch, ”every-time
a process holds any PyTorch object that is allocated on the GPU, then it allocates an
individual copy of all the kernels (CUDA functions) that PyTorch uses, which is about
1GB” [83]. We observed that an unshared model uses 1.2GB of VRAM per process and
decided not to use the memory-sharing feature. The additional overhead to implement
it did not justify the saved memory. Each process loads its own instance of the model.

Either way, at some point, the worker’s VRAM needs outgrows the GPU’s resources. We
implemented the parallelization in such a way that the user can assign GPU identifiers
to each component (arena, training loop, and workers). The components then distribute
their processes equally to the given hardware.

64 Ture Claußen

4.3 Training Pipeline

4.3.5 Symmetrical Board Generation

Abalone’s board has six rotational symmetries and six mirror axes, as mentioned in
section 3.6. By generating the symmetrical board states for each tuple (s, π, z), the data
can be augmented by a factor of twelve. That means π and v are equivalent for up to 12
symmetrical board states. Some board configurations have less symmetrical boards, as
some are identical. For example, rotating the default starting position by 120° produces
the same board as mirroring it by the s-axis (cf. figure 3.5). In general, the factor of 12
does hold for almost all board states.

The first step in generating the symmetrical boards is to turn the marble positions into
cube coordinates. There is a simple way for cube coordinates to mirror and rotate
coordinates. A mapping function transforms marble coordinates from their matrix co-
ordinates of the form (x, y) to (q, r, s). The origin of the cube coordinate system is laid
into the center of the Abalone board, such that e.g. E5 = (0, 0, 0) or A1 = (−4, 4, 0).

The transformed coordinates can be rotated around the origin by 60° clockwise by shift-
ing the values to the right and negating the values:

(q, r, s)
to (-r, -s, -q)
to (s, q, r)

To mirror a cube coordinate along one of the three main coordinate axes q, r or s the
two coordinates that don’t belong to the axis are swapped:

function reflect_q(h) { return Cube(h.q, h.s, h.r); }
function reflect_r(h) { return Cube(h.s, h.r, h.q); }
function reflect_s(h) { return Cube(h.r, h.q, h.s); }

The coordinates need to be negated first to mirror the orthogonal axis to the main axis.
Besides all marbles, all moves in π, whose probability is not 0, have to be transformed
as well. First, the move corresponding to the index in π is looked up. As a move
consists of one or two marble coordinates, those are transformed by the same scheme.
The directions can be transformed into cube coordinates as well:

(+1, -1, 0): NORTH_EAST
(+1, 0, -1): EAST
(0, +1, -1): SOUTH_EAST
(-1, +1, 0): SOUTH_WEST
(-1, 0, +1): WEST
(0, -1, +1): NORTH_WEST

This way, the same functions can be applied to the directions. After all operations are
applied, the cube coordinates are converted back to marble coordinates and moves. In

65

4 System Architecture

the case of the moves, the probabilities from the original π are written to the new index
position.

4.3.6 Warm-Up

AlphaZero starts learning from scratch. Thus, there is no information about what con-
stitutes a good move or strategy. The result is a cold-start problem. The self-play
learning might not improve performance or even harm performance for an extended pe-
riod of time. Equipped with ample computational resources like DeepMind, this poses
no problem and is even desirable: The network is not nudged into a specific direction
and can produce more novel insights.

Investigations into the application of AlphaZero’s training principle showed possible ways
to warm-start the training of the network [84]. Wang proposes an adaptive rollout-based
warm-start. The method reintroduces rollouts into the MCTS that are performed at the
beginning of the training process and are slowly phased out over the course of training.

Another possibility would be to reintroduce components of AlphaGo, either by using a
database of moves or letting the agent train against a heuristic agent. For Abalone, we
introduce a similar method. By letting a heuristic agent play against a random agent,
an initial experience buffer is created. Thus, the first iteration of the training of fθ

produces a function that approximates the heuristic player. We hypothesized that the
self-play further improves this warmed-up agent like it did in the RL step in AlphaGo.

66 Ture Claußen

5 Experiments and Results

Each experiment has a hypothesis, a setup, and a result.

5.1 Hardware

For the purpose of this thesis, we had access to two machines. The smaller machine
is a personal machine, and the large machine is rented at the provider Exoscale [85].
They will be referred to as Balthazar and Melchior respectively. Their specifications are
described in table 5.1. Caspar was a larger version of Melchior, but the additional GPU
was not useful. Therefore Caspar is not considered further.

Component Balthazar Melchior
CPU 6 Core AMD Ryzen 3600 24 Core Intel Broadwell
RAM 32GB 120GB
GPU NVIDIA GTX 1660 Super 3 · NVIDIA P100

VRAM 6GB 3 · 16GB
Storage 500GB SSD 400GB SSD

Table 5.1: Hardware specifications of the utilized machines

5.2 Parameters

A multitude of parameters controls the behavior of the system. The most relevant
hyperparameters are listed in table 5.2. If one of the parameters differs from the default
values in an experiment, it will be mentioned. For each experiment, all parameters are
persisted by the system.

67

5 Experiments and Results

Name Default Explanation
temp treshhold 60 The number of moves for which the next move

is sampled (cf. equation 2.15)
update treshold 0.6 The percentage of matches, that has to be won

for a new network to be accepted
num MCTS sims 120 The number of times the search tree is ex-

panded during MCTS
num self play workers 9 The number of workers used for parallel self-

play
num arena workers 8 The number of workers used for parallel Arena

matches
load model false Indicates whether to load an existing model

maxlen experience buffer 1,000,000 The maximum number of tuples (s, π, z) in the
buffer

nnet size mini The neural net used as introduced in 4.2.2
lr 0.001 The learning rate during training of the neural

network
epochs 10 The number of of epochs during training of the

neural network
batch size 64 The size of the batches during training of the

neural network

Table 5.2: The parameters of the training pipeline

68 Ture Claußen

5.3 Validation

5.3 Validation

Hypothesis The modified framework still converges to optimal play for TicTacToe and
Othello.

Setup Run pipeline with modified implemenation of TicTacToe and Othello from [76]
on Balthazar.

Name Value
temp treshhold 15

num MCTS sims 30
num self play workers 2

num arena workers 2
maxlen experience buffer 960,000

Table 5.3: The parameters for the naive run

Result Convergence to optimal play for TicTacToe (cf. figure 5.1) and Othello very
likely.

(a) TicTacToe 3 · 3 field (b) Othello 6 · 6 field

Figure 5.1: Win-ratio against random baseline in TicTacToe and Othello. Win-ratio is
gamesWon
allGames

69

5 Experiments and Results

5.4 Application

5.4.1 Naive Run

Hypothesis The naive implementation without any Abalone specific modifications con-
verges to optimal play.

Setup Run pipeline on Balthazar.

Name Value
num MCTS sims 60

num self play workers 2
num arena workers 2

maxlen experience buffer 960,000

Table 5.4: The parameters for the naive run on Balthazar

Result No improvement in playing performance, cf. figure 5.2

(a) The win-ratio (b) The cumulative reward

Figure 5.2: The training performance for the naive run

5.4.2 Naive Run with large NN

Hypothesis The naive implementation without any Abalone specific modifications con-
verges to optimal play with the large NN.

70 Ture Claußen

5.4 Application

Setup Run pipeline on Balthazar.

Name Value
num MCTS sims 60

num self play workers 2
num arena workers 2

maxlen experience buffer 960,000
nnet size large

Table 5.5: The parameters for the naive run on Balthazar

Result No improvement in playing performance, cf. figure 5.3. The network seems to
have a bug leading to strong divergence. We decided to discard the implementation for
the time being as the inference and training of the network took approximately 30%
longer.

(a) The win-ratio (b) The cumulative reward

Figure 5.3: The training performance for the naive run with the large NN

5.4.3 Scaled naive Run

Hypothesis The naive implementation without any Abalone specific modifications con-
verges to optimal play on a larger machine with a bigger buffer and more workers.

Setup Run pipeline on Melchior.

71

5 Experiments and Results

(a) The win-ratio (b) The cumulative reward

Figure 5.4: The training performance for the scaled naive run

Result No improvement in playing performance, divergence, cf. figure 5.4

5.4.4 Reward Distribution

Hypothesis The distribution of game results z is uneven.

Setup Plot histogram of z in experience buffer of the previous run.

Result Most of the games end up as drawn or with minor advantage for one player, cf.
figure 5.5).

5.4.5 Scaled warmed-up Run

Hypothesis Warming the network up with experience generated by Verloop’s minimax
against a random player nudges the network towards more aggressive play. The resulting
experience buffer has stronger signals z, which improves performance.

Setup Run pipeline on Melchior with a warmed-up network.

72 Ture Claußen

5.4 Application

(a) The experience buffer after the fifth iteration (b) The experience buffer after the twentieth iter-
ation

Figure 5.5: Distribution of z in experience buffer of the naive run on Balthazar.

Name Value
load model true

Table 5.6: The parameters for the validation runs

Result The agent maintains its strength against the random agent throughout the
training. The performance against the heuristic agent begins to improve. About half of
the games are drawn and the marble losses incurred decrease, cf. figure 5.6. However,
during 16 iterations only four new networks were accepted. The rate of acceptance
decreases over time. The experience buffer during different iterations of the training run
looks promising. The distribution shows much higher rewards, many games even ending
before the cutoff of 200 moves, cf. figure 5.7. Nevertheless, there seems to be a trend of
the rewards to gravitate towards more draws.

5.4.6 Scaled Run with adjusted Reward

Hypothesis The reward function provides no penalty for long matches, that result in
a draw.

Setup Run pipeline on Melchior with adjusted reward function. Each turn has a reward
of −0.001, for a maximum game length of 200 that is a maximum of −0.2. The other
rewards remain unchanged.

73

5 Experiments and Results

(a) The win-ratio (b) The cumulative reward

Figure 5.6: The training performance for the scaled warmed-up run

Result Inconclusive for the amount of iterations performed. A tendency of improve-
ment is present.

5.4.7 Runtime of Experiments

Hypothesis The training of the neural network has become a bottleneck.

Setup Compare lengths of training iterations on Balthazar and Melchior.

Result Due to the parallel nature, self-play games are generated continuously. The
longer one training iteration takes, the bigger the backlog of new games becomes. One
iteration took, on average, one h. The training of the network has become the limiting
factor, not the generation of self-play games, cf. figure 5.10. The serialized experience
buffer (with Python pickle) with 1,000,000 items takes 10GB of storage. As the entire
buffer is used for training, a long training duration is to be expected.

74 Ture Claußen

5.4 Application

(a) The experience buffer after the first iteration (b) The experience buffer after the tenth iteration

(c) The experience buffer after the fifteenth itera-
tion

(d) The experience buffer after the twentieth iter-
ation

Figure 5.7: Initially the buffer is still filled with the experience from the prewarming
phase, where all games ended with eiter -1 or 1 reward.

75

5 Experiments and Results

(a) The agent shows strong
play, drawing against the
heuristic agent

(b) The agent shows weak
play, loosing formation
and getting pressed
against the brink of the
board

Figure 5.8: The final board positions against heuristic player, during training iteration
10 with the warmed up NN

(a) The win-ratio (b) The cumulative reward

Figure 5.9: The training performance for the scaled run with adjusted reward

76 Ture Claußen

5.4 Application

(a) Training run on Balthazar (b) Training run on Melchior

Figure 5.10: Duration of one training iteration in seconds. The training times stabilize
once the experience buffer has reached its maximum size.

77

6 Conclusion

6.1 Goal Evaluation

The application of AlphaZero to Abalone has proven to be difficult. Without the avail-
ability of a training framework based on AlphaZero, the time frame for this thesis would
have been too small. The framework gave some guarantees about correctness and saved
engineering efforts. The hexagonal board and the more complex move system introduced
difficulties in applying the original architecture. A more significant problem is Abalone’s
state space and game tree complexity, which require much more compute than Hex or
Othello. The high demands for compute limited the number of experiments that could
be run. Machine learning is highly empirical. Therefore less iterations, mean less hy-
potheses, and hyperparameter configurations could be tested. The originally stated goal
was to apply the methods of AlphaZero to Abalone. As we created a training pipeline
and game-playing agent capable of running, this goal is at least partially achieved. How-
ever, only a slight trend of convergence towards an optimal policy was observed. The
most successful variant was the network, which was warmed up with experience from
the heuristic agent. It immediately beat the random agent in 100% of the games and
was able to draw more games against the heuristic agent.

The achieved results are weak compared with the performance of the minimax-based
method. The compute resources required overshadow the modest single-threaded im-
plementation by Verloop. As Abalone has lower strategic complexity than, e.g., chess,
the heuristics designed by humans are quite powerful. A significant advantage of self-
play learning is the ability to learn new strategies, previously not known to humans, as
observed in AlphaGo. We could not achieve this augmentation of human knowledge for
Abalone. The win ratio against heuristic players was too low.

6.2 Future Work

The method proposed by AlphaZero is potent and remains promising for Abalone as
well. Due to limitations in compute (or lack of efficiency) for the experiments, it has not
been possible to replicate the groundbreaking success achieved in Go for Abalone. This

78

6.2 Future Work

circumstance also points to the major downside of the method as it requires significantly
more compute than any classical knowledge-based method.

Looking at deep RL in general, a lowering in the cost for compute would greatly benefit
this method. Gradient descent and even simple feedforward for neural networks are
costly operations, even with the proliferation of more powerful hardware accelerators.
The hardware used by DeepMind for AlphaGo is only accessible to top researchers in
the field due to the high cost. There are two main potential avenues through which we
could reap the benefits of this method with lower capital requirements:

• Further theoretic improvements bringing significant speedups. This could be some-
thing along the lines of the incremental improvement between AlphaGo and Alp-
haZero or full paradigm shifts in the methodology.

• The cost for training neural networks coming down by an order of magnitude from
current levels. This decrease could be due simply to the passage of time as in
the past accelerators like GPUs still followed an exponential improvement rate as
observed in Moore’s Law for CPUs [86] (”Huang’s Law” [87]). Another factor would
be architectural changes that improve scalability and deep learning performance.
Additionally, the rising economic significance of machine learning has provided an
incentive for more specialized hardware like TPUs [73] or Tenstorrent’s Grayskull.
[88] The same reason reignited interest in optical computing accelerators to bring
drastic changes in power requirements and performance for matrix multiplication.
[89, 90]

In addition to gaining more compute resources, there are also potential theoretic im-
provements to make. Abalearn describes a ”risk-sensitive” approach as ”the problems
we encountered was that self-play was not effective because the agent repeatedly kept
playing the same kind of moves, never-ending a game” [70, p. 8]. The function described
could be transferred to this work in order to encourage more aggressive game-play.

Adjusting the reward to nudge the behavior of the agent into a particular direction
remains promising as well, even though the attempt was not successful. In order to
achieve more robust results, it could be combined with a warmed-up network and a
longer training duration.

The team around David Silver at DeepMind continues to generalize and improve the
method of self-play in combination with deep RL. Very recently, they expanded the
scope of the framework to include imperfect-information games like poker. They dubbed
it the ”Player of Games” [91].

79

Bibliography

[1] C. Higgins, “A Brief History of Deep Blue, IBM’s Chess Computer — Mental Floss,”
https://web.archive.org/web/20170803130439/https://www.mentalfloss.com/article/503178/brief-
history-deep-blue-ibms-chess-computer, Jul. 2017.

[2] J. Haugeland, Artificial Intelligence: The Very Idea. Cambridge, Mass: MIT Press,
1985.

[3] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,”
Mind, vol. LIX, no. 236, pp. 433–460, Oct. 1950.

[4] DeepMind, “Match 1 - Google DeepMind Challenge Match: Lee Sedol vs AlphaGo,”
https://www.youtube.com/watch?v=vFr3K2DORc8&t=7020s.

[5] N. J. Nilsson, Artificial Intelligence: A New Synthesis. Elsevier, Apr. 1998.

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van
den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without
human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[7] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mas-
tering Atari, Go, chess and shogi by planning with a learned model,” Nature, vol.
588, no. 7839, pp. 604–609, Dec. 2020.

[8] D. Bradley, “[CLOSED] Win! Win! Win! There are boxes
of tabletop game Abalone on offer with our hot new newsletter,”
https://www.pocketgamer.com/abalone/closed-win-win-win-there-are-boxes-
of-tabletop-game-abalone-on-offer-with-our-ho/, 2018.

[9] “Reinforcement learning,” Wikipedia, Jan. 2022.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

80

Bibliography

[11] C. Berner, G. Brockman, B. Chan, V. Cheung, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski,
and S. Zhang, “Dota 2 with Large Scale Deep Reinforcement Learning,” p. 66, Dec.
2019.

[12] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Dani-
helka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets,
R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine,
C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McK-
inney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019.

[13] C. Gamble and J. Gao, “Safety-first AI for autonomous data centre cooling and
industrial control,” https://deepmind.com/blog/article/safety-first-ai-autonomous-
data-centre-cooling-and-industrial-control, Aug. 2018.

[14] T. Jebara, “For Your Ears Only: Personalizing Spotify Home with Ma-
chine Learning,” https://engineering.atspotify.com/2020/01/16/for-your-ears-only-
personalizing-spotify-home-with-machine-learning/, Jan. 2020.

[15] F. Siddiqi, “ML Platform Meetup: Infra for Contextual Bandits and Re-
inforcement Learning,” https://netflixtechblog.com/ml-platform-meetup-infra-for-
contextual-bandits-and-reinforcement-learning-4a90305948ef, Oct. 2019.

[16] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J.
Lee, E. Johnson, O. Pathak, A. Nazi, J. Pak, A. Tong, K. Srinivasa, W. Hang,
E. Tuncer, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and J. Dean, “A graph
placement methodology for fast chip design,” Nature, vol. 594, no. 7862, pp. 207–
212, Jun. 2021.

[17] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50K
tries and 700 robot hours,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). Stockholm, Sweden: IEEE, May 2016, pp. 3406–3413.

[18] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning
Synergies Between Pushing and Grasping with Self-Supervised Deep Reinforcement
Learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Madrid: IEEE, Oct. 2018, pp. 4238–4245.

[19] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to Poke by
Poking: Experiential Learning of Intuitive Physics.”

81

Bibliography

[20] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-Aware
Reinforcement Learning for Collision Avoidance,” arXiv:1702.01182 [cs], Feb. 2017.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, second
edition ed., ser. Adaptive Computation and Machine Learning Series. Cambridge,
Massachusetts: The MIT Press, 2018.

[22] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed. Pear-
son Education, Inc, 2021.

[23] D. E. Knuth and L. T. Pardo, “The Early Development of Programming Lan-
guages,” in A History of Computing in the Twentieth Century, N. Metropolis,
J. Howlett, and G.-C. Rota, Eds. San Diego: Academic Press, Jan. 1980, pp.
197–273.

[24] C. E. Shannon, “XXII. Programming a computer for playing chess,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no.
314, pp. 256–275, Mar. 1950.

[25] “Stockfish (chess),” Wikipedia, Dec. 2021.

[26] “Stockfish - Open Source Chess Engine,” https://stockfishchess.org/.

[27] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search,” in Computers and Games, ser. Lecture Notes in Computer Science, H. J.
van den Herik, P. Ciancarini, and H. H. L. M. J. Donkers, Eds. Berlin, Heidelberg:
Springer, 2007, pp. 72–83.

[28] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in Machine
Learning: ECML 2006, ser. Lecture Notes in Computer Science, J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer, 2006, pp.
282–293.

[29] “Fig. 1. Outline of a Monte-Carlo Tree Search.”
https://www.researchgate.net/figure/Outline-of-a-Monte-Carlo-Tree-
Search fig1 23751563.

[30] B. Bouzy, “Associating Shallow and Selective Global Tree Search with Monte Carlo
for 9 × 9 Go,” in Computers and Games, ser. Lecture Notes in Computer Science,
H. J. van den Herik, Y. Björnsson, and N. S. Netanyahu, Eds. Berlin, Heidelberg:
Springer, 2006, pp. 67–80.

[31] P. Auer and N. Cesa-Bianchi, “Finite-time Analysis of the Multiarmed Bandit Prob-
lem.”

[32] S. Gelly and D. Silver, “Achieving Master Level Play in 9 × 9 Computer Go,” p. 4.

82 Ture Claußen

Bibliography

[33] ——, “Monte-Carlo tree search and rapid action value estimation in computer Go,”
Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875, Jul. 2011.

[34] X. Yang, “Markov Chain and Its Applications,” Social Science Research Network,
Rochester, NY, SSRN Scholarly Paper ID 3562746, Mar. 2019.

[35] R. Bellman, “A Markovian Decision Process,” Journal of Mathematics and Mechan-
ics, vol. 6, no. 5, pp. 679–684, 1957.

[36] “Examples of MDPs - Markov Decision Processes,”
https://www.coursera.org/lecture/fundamentals-of-reinforcement-
learning/examples-of-mdps-ACRYv.

[37] L. Moroney, AI and Machine Learning for Coders: A Programmer’s Guide to Ar-
tificial Intelligence. O’Reilly, 2020.

[38] C. Colah, “Calculus on Computational Graphs: Backpropagation – colah’s blog,”
https://colah.github.io/posts/2015-08-Backprop/.

[39] “Convolutional neural network,” Wikipedia, Jan. 2022.

[40] E. W. Weisstein, “Convolution,” https://mathworld.wolfram.com/Convolution.html.

[41] H. Brůasdal, “Deep reinforcement Learning Using Monte-Carlo Tree Search for Hex
and Othello,” 2020.

[42] R. Ilin, T. Watson, and R. Kozma, “Abstraction hierarchy in deep learning neural
networks,” in 2017 International Joint Conference on Neural Networks (IJCNN).
Anchorage, AK, USA: IEEE, May 2017, pp. 768–774.

[43] M. K. (https://stats.stackexchange.com/users/7250/matt-krause), “What is trans-
lation invariance in computer vision and convolutional neural network?” Cross
Validated.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.
84–90, May 2017.

[45] “Wolfram—Alpha Widgets: ”Plot two functions” - Free Mathematics Widget,”
https://www.wolframalpha.com/widgets/view.jsp?id=59752a7f2c9aa5d375de1f1d13a3f5c4.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016, pp. 770–778.

[47] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of Data,”
IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, Mar. 2009.

[48] “Go (game),” Wikipedia, Jan. 2022.

83

Bibliography

[49] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, no. 1, pp. 145–179, Jan.
2002.

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with
deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
Jan. 2016.

[51] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” 1992.

[52] C. D. Rosin, “Multi-armed bandits with episode context,” Annals of Mathematics
and Artificial Intelligence, vol. 61, no. 3, pp. 203–230, Mar. 2011.

[53] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,
“Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm,” Dec. 2017.

[54] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,
“Dueling Network Architectures for Deep Reinforcement Learning,” p. 9, 2016.

[55] “Abalone (board game),” https://en.wikipedia.org/wiki/Abalone (board game),
Dec. 2020.

[56] A. S.A., “Abalone rulebook,” https://cdn.1j1ju.com/medias/c2/b0/3a-abalone-
rulebook.pdf.

[57] “Red Blob Games: Hexagonal Grids,” https://www.redblobgames.com/grids/hexagons/.

[58] towzeur, “Towzeur/gym-abalone,” Jan. 2021.

[59] O. Aichholzer, “Abalone games,” http://www.ist.tugraz.at/staff/aichholzer/research/rp/abalone/games.php,
2006.

[60] XKCD, “Standards,” https://xkcd.com/927/.

[61] Scriptim, “Scriptim/Abalone-BoAI,” Apr. 2021.

[62] N. Lemmens, “Constructing an abalone game-playing agent,” in Bachelor Confer-
ence Knowledge Engineering, Universiteit Maastricht. Citeseer, 2005.

[63] P. Chorus, “Implementing a computer player for abalone using alpha-beta and
monte-carlo search,” Master’s thesis, Citeseer, 2009.

84 Ture Claußen

Bibliography

[64] A. Papadopoulos, K. Toumpas, A. Chrysopoulos, and P. A. Mitkas, “Exploring
Optimization Strategies in Board Game Abalone for Alpha-Beta Search,” IEEE
Conference on Computational Intelligence and Games, p. 8, 2012.

[65] E. Ozcan and B. Hulagu, “A Simple Intelligent Agent for Playing Abalone Game:
ABLA,” p. 10, 2004.

[66] O. Aichholzer, F. Aurenhammer, and T. Werner, “Algorithmic fun-abalone,” Special
Issue on Foundations of Information Processing of TELEMATIK, vol. 1, pp. 4–6,
2002.

[67] O. Aichholzer, “Oswin Aichholzer’s homepage,”
http://www.ist.tugraz.at/staff/aichholzer/research/rp/abalone/, 2006.

[68] M. Verloop, “A Critical Review: Exploring Optimization Strategies in Board Game
Abalone for Alpha-Beta Search,” p. 49.

[69] ——, “AbaloneAI,” https://github.com/MichielVerloop/AbaloneAI.

[70] P. Campos and T. Langlois, “Abalearn: Ecient Self-Play Learning of the game
Abalone,” 2003.

[71] G. Tesauro, “TD-Gammon, a Self-Teaching Backgammon Program, Achieves
Master-Level Play,” Neural Computation, vol. 6, no. 2, pp. 215–219, Mar. 1994.

[72] R. Mizrachi, G. Golran, O. Jacobi, and R. Zats, “Introduction to artificial intelli-
gence Final Project,” The Hebrew University of Jerusalem, Tech. Rep., 2017.

[73] “TPU Research Cloud,” https://sites.research.google/trc/.

[74] “Tf.keras.Model — TensorFlow Core v2.7.0,” https://www.tensorflow.org/api docs/python/tf/keras/Model#predict.

[75] S. Thakoor, S. Nair, and M. Jhunjhunwala, “Learning to Play Othello Without
Human Knowledge,” Stanford University, Final Project Report.

[76] ——, “Suragnair/alpha-zero-general: A clean implementation based on AlphaZero
for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4
and more,” https://github.com/suragnair/alpha-zero-general.

[77] henribru, “Deep MCTS,” Oct. 2021.

[78] OpenAI, “Gym: A toolkit for developing and comparing reinforcement learning
algorithms,” https://gym.openai.com.

[79] T. Claussen, “Abalone,” 2021.

[80] ——, “Campfireman/Abalone-BoAI,” Jun. 2021.

[81] “GlobalInterpreterLock - Python Wiki,” https://wiki.python.org/moin/GlobalInterpreterLock.

[82] “Module — PyTorch 1.10.1 documentation,” https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.share memory.

85

Bibliography

[83] radim shark, “Sharing model between processes automatically allocates new
memory,” https://discuss.pytorch.org/t/sharing-model-between-processes-
automatically-allocates-new-memory/96724/3, 2020.

[84] H. Wang, M. Preuss, and A. Plaat, “Adaptive Warm-Start MCTS in AlphaZero-like
Deep Reinforcement Learning,” arXiv:2105.06136 [cs], May 2021.

[85] “Exoscale,” https://www.exoscale.com/.

[86] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” IEEE Solid-State
Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, Sep. 2006.

[87] “Huang’s law,” Wikipedia, Oct. 2021.

[88] “Grayskull,” https://tenstorrent.com/grayskull/.

[89] “Lightmatter,” https://lightmatter.co/.

[90] “Lightelligence,” https://www.lightelligence.ai/.

[91] M. Schmid, M. Moravcik, N. Burch, R. Kadlec, J. Davidson, K. Waugh, N. Bard,
F. Timbers, M. Lanctot, Z. Holland, E. Davoodi, A. Christianson, and M. Bowling,
“Player of Games,” arXiv:2112.03178 [cs], Dec. 2021.

86 Ture Claußen

	Inhalt
	Abstract
	Preface
	Introduction
	Background and Motivation
	Research Goals
	Structure

	Background Theory
	Artificial Intelligence
	Rational Agent
	(Task) Environment

	Adversarial Search
	Minimax Algorithm
	Heuristic Functions
	Alpha-beta Pruning
	Monte Carlo Tree Search

	Reinforcement Learning
	Markov Decision Processes
	Exploration vs. Exploitation

	Deep Reinforcement Learning
	(Deep) Neural Networks
	Convolutional Neural Network
	Residual Networks
	AlphaGo
	AlphaZero

	Abalone
	Rules
	Task Environment
	Board Representations
	Move Notation
	Symmetries
	Complexity
	Existing Game-Playing Agents
	Minimax
	MCTS
	Reinforcement Learning

	System Architecture
	Software
	Deep Learning Library
	Training Framework
	Game Engine

	Neural Network
	Dimensions
	Architecture

	Training Pipeline
	Components
	Training Algorithm
	Parallelization
	Distribution
	Symmetrical Board Generation
	Warm-Up

	Experiments and Results
	Hardware
	Parameters
	Validation
	Application
	Naive Run
	Naive Run with large NN
	Scaled naive Run
	Reward Distribution
	Scaled warmed-up Run
	Scaled Run with adjusted Reward
	Runtime of Experiments

	Conclusion
	Goal Evaluation
	Future Work

