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Abstract: An important part of computed tomography is the calculation of a
three-dimensional reconstruction of an object from series of X-ray images. Unfortunately,
some applications do not provide sufficient X-ray images. Then, the reconstructed objects
no longer truly represent the original. Inside of the volumes, the accuracy seems to vary
unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction,
voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the
measured X-rays, as well as the inclusion of a priori knowledge about the materials that
the object receiving the X-ray examination consists of. For each voxel, the proposed
method outputs a numerical value that represents the probability of existence of a predefined
material at the position of the voxel while doing X-ray. Such a probabilistic quality
measure was lacking so far. In our experiment, false reconstructed areas get detected
by their low probability. In exact reconstructed areas, a high probability predominates.
Receiver Operating Characteristics not only confirm the reliability of our quality measure
but also demonstrate that existing methods are less suitable for evaluating a reconstruction.

Keywords: X-ray; computed tomography; discrete tomography; three-dimensional image
reconstruction; limited data; Dempster–Shafer theory; data fusion; probability calculus
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1. Introduction

First and foremost, computed tomography was introduced for clinical diagnostics. To an increasing
degree, it is also used for quality assurance in the production and maintenance of man-made objects. As it
generates a three-dimensional reconstruction of the inside of the object from large series of X-ray images,
inner structures such as casting defects or cold soldered connections become visible. Moreover, exact
measurements of the shape are feasible. But the very use in quality assurance demands reconstructions
that are absolutely true to original. To calculate such reconstructions, it is necessary to provide many
X-ray images from different angles of vision. Normally, the object is turned 360◦ while doing X-ray.

In some applications, it is not possible to turn the object 360◦. For example, if the shape is bulky
and stops the rotation in the computer tomography scanner, then the number of X-ray images is reduced.
Mathematically speaking, the reconstruction problem is underdetermined. The reconstruction volume
can only be estimated. For the most voxels, this estimation differs drastically from the original.
The reconstructed object seems to be blurred (shown in Figure 1).

Figure 1. Cross sections through the reconstructed volumes from series of measured cone
beam X-ray images spanning 360◦ (left image) and 100◦ (right image). They show an
aluminium object with steel screw. The reconstructed density is proportional to the grey.

There are many reconstruction algorithms that try and rectify the reconstructed objects. Generally,
the lack of X-rays is compensated by including additional information; a priori knowledge about the
shape or about the materials that the object receiving X-ray consists of, i.e., the specific density of each
material. Most solutions that deal with knowledge about the shape fit a parametric model or an atlas
to the reconstructed object. They get useful results, as shown for example in [1,2]. Others handle
fragmentary knowledge about the shape demanding smoothness of the surface and combine knowledge
about the materials [3,4]. It becomes more difficult to improve the reconstruction of any object if there is
only knowledge about the materials available [5]. Our aim is to evaluate a given reconstructed volume,
regardless of the algorithm that generated it.

Topical works express the reconstruction quality of a voxel by gradient based values [6–8] or Gibbs
priors [9]. All these approaches exploit the densities of neighbouring voxels only. They are unsuited to
detect bad areas in reconstructions from a limited angle range, since these areas are not remarkably sharp.
Others evaluate a voxel by the difference between its reconstructed density and the next a priori known
material density. In this way, test objects that consist of one solid material can be reconstructed [10,11].
When the test object is composed of several materials, the quality measure fails, because some voxels get
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a material density by mistake. For example, the test object in Figure 1 (on the right) is blurred. Voxels in
the air near the steel screw wrongly yield the density of aluminium.

The evaluation proposed in this paper includes the measurement as well as a priori knowledge about
the materials. For each voxel, the reconstructed density is replaced by each a priori known material
density. For each replacement, it is reviewed how many X-rays support the current material. In so
doing, we estimate a discrete probability distribution over material. Then, we apply Dempster’s rule
of combination, especially in the interpretation of Yager, to combine each probability value and get a
new probability distribution, in which the reconstruction quality is reflected. In case the quality is poor,
the distribution spreads out. The better the quality is, the more the distribution concentrates and the
more its maximum increases. Finally, we pick out the maximum as quality measure, which we name
“approbatio”. Since it is a probability, it provides a uniform basis to validate any reconstruction.

In Section 2 we give a brief introduction to the classical reconstruction techniques. Then, in Section 3
we enter into the question of how to include a priori knowledge. In Section 4 the evaluation is described.
We present and discuss our experimental results in Section 5. A few remarks conclude the paper.

2. Reconstruction Technique

The grey value yp of pixel p in a measured X-ray image is equal to the line integral of the density x (l)
along the ray path l (assuming a monochromatic X-ray source and ignoring scattering).

yp =

∫
x (l) dl (1)

To calculate a reconstruction of the object examined by X-ray in a quantised grid, the Equation (1)
changes into Equation (2). Here, V is the number of voxels in the whole volume, xv represents the
density of voxel v, and wvp is a weighting factor that depends on the distance between the pth ray and the
center of the vth voxel. When the ray exactly hits the voxel, wvp equals one. When the distance increases,
wvp drops. If there is no contribution of the ray to the voxel at all, wvp amounts to zero. The calculation
of wvp is treated in [12].

yp =
V∑
v=1

wvpxv (2)

There are several techniques to calculate the densities xv from the measured pixel values yp, listed very
comprehensively for example in [13]. These techniques can be divided into two categories: On the one
hand, there are analytical methods, which involve all X-ray images to generate one reconstruction. On the
other, there are iterative methods that also involve all X-ray images, but one after the other, i.e., step by
step. In each step, a correction for the current reconstruction is calculated. The correction equations of
the most referred iterative reconstruction algorithms are based on minimisation of the cost function in
Equation (3) [14].

cost =
∑
p

(
yp −

V∑
v=1

wvpxv

)2

(3)



Sensors 2013, 13 140

3. Including a Priori Knowledge

Some existing works, e.g., [3] and [15], extend the cost function in Equation (3) with an additive
term that includes a priori knowledge. In so doing, they create their own reconstruction technique.
For our aim to tackle the evaluation of any given reconstruction, we pursue a related strategy: For a
selected voxel s the actual density xs is replaced successively with each predefined material density md

(with d = 1, ..., D and D is the number of different materials). The rest of the volume is unchanged.
Separately for each inserted material densitymd, we calculate the projection error esp (md) of each X-ray
p crossing exactly voxel s.

esp (md) = yp −
V∑

v=1
v 6=s

(wvpxv)− wspmd (4)

In the best case, the projection error esp (md) equals zero, i.e., for the current ray p the Equation (2) is
fulfilled. In contrast, a high projection error indicates an imperfect reconstruction or a material that does
not fit the measurement, or both.

4. Evaluation

4.1. Analysis of the Projection Error

In the following, we take the projection error as random variable es. By consulting all X-rays that
pass through a selected voxel s, we can record a histogram of projection error and estimate a continuous
probability distribution p (es), or more precisely one probability distribution per material density, i.e.,
p (es | md).

Figure 2. Test object and its reconstruction on the (left). Histograms of projection error
on the (right) measured at the position of the “good” reconstructed voxel g and the “bad”
reconstructed voxel b.
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The test object shown in Figure 2 is made up of four different materials: m1 = 0.00 (representing air),
m2 = 0.03 (hollow sphere), m3 = 0.06 (solid spheres) and m4 = 0.09 (cube). Exemplarily, we examine
the histograms measured at the positions of two voxels that are both situated inside of the hollow sphere,
and in both cases we inserted the very material density of the hollow sphere m2 = 0.03. Voxel g is
evidently “good”. Here, most X-rays yield a projection error around zero. At the position of voxel b
(as well as in its neighbourhood) the reconstruction is “bad”. The histogram of projection error spreads
out. To sum up, the shape of the histogram gives an indication of the local reconstruction quality.

4.2. Extraction of a Probability Value

By counting the rays that hold a projection error in a defined confidence interval around zero,
we estimate the probability P (−δ < es < δ | md): a probability of an insignificant projection error
under the condition that the material density md exists at the position of voxel s while doing X-ray.
We assume that an insignificant projection error is achieved if the voxel s cannot change to another
material, neither md+1 nor md−1. δ results from the difference of material densities in Equation (5).

δ = min
16d6D−1

(
md+1 −md

2

)
(5)

In the following, we use the notation in Equation (6).

P (−δ < es < δ | md) = Ps (md) (6)

Note that
D∑
d=1

Ps (md) ≤ 1 (7)

is given, which leads to the use of the Dempster–Shafer theory (Section 4.4).

4.3. Discrete Distribution of Conditional Probabilities

Now, for each voxel there is one probability value per material density. Exemplarily, Figure 3 shows
the probability distributions over material density measured at the positions of voxel g and voxel b
(according to Figure 2). For the “good” reconstructed voxel g, the material density of the hollow sphere
achieves a high probability, whereas the probability of any other material is low. In the distribution of
voxel b there is no distinct maximum.

Figure 3. Discrete probability distributions over material density at the positions of voxel g
and b according to Figure 2.
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4.4. Interpretation in the Sense of Dempster–Shafer

The discrete probability distribution over material density already retains all the information required
for determining quality. Yet for practical applications, it is more advantageous to handle one numerical
value that expresses the reconstruction quality. The maximum of the distribution seems to be suitable,
but it does not include conflicts, as demonstrated in Figure 4. Here, two different voxels i and j hold
a maximum probability, which is 0.3 at material density m2. For voxel i this maximum stands out;
the insertion of any other material produces extremely low probabilities. In contrast, for voxel j each
material has approximately equal probabilities.

Figure 4. Probability distributions over material density at two voxels i and j.

To keep conflicts, we apply the Dempster–Shafer theory [16,17]. Here, the basic idea is that a
measured probability P (A) expresses how certain the event A occurs, but 1 − P (A) does not inform
about the complementary event. Instead, 1−P (A) is specified as degree of ignorance. In the same sense,
our probability value Ps (md) was measured while inserting material density md, and therefore provides
information about md only, not about other materials. Under the terms of Yager [17], each probability
value Ps (md) of a voxel becomes fused with the degree of ignorance of each other material mc that the
object examined by X-ray consists of Equation (8).

Ps,fused (md) = Ps (md) ·
D∏
c=1
c6=d

(1− Ps (mc)) (8)

Figure 5 shows the fused probability distributions over material density that result from Figure 4.
Now, the conflict-ridden voxel j holds a lower maximum than voxel i.

Figure 5. Fused probability distributions over material density according to Figure 4.
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4.5. Proposed Quality Measures

We introduce the maximum of the fused probability distribution Ps,fused (md) as quality measure,
which we name approbatio as in Equation (9).

as = max
16d6D

Ps,fused (md) (9)

In addition to the evaluation by the voxel, we use the average approbatio a in Equation (10) to express
the reconstruction quality of a whole volume.

a =
1

V

V∑
v=1

av (10)

5. Results and Discussion

5.1. Test Environment

The experiment deals with two different test objects, both situated in cone beam geometry. The first
test object consists of eight cubes in which one cube is cracked (pictured in Figure 6(a)). We briefly
name it “cubes”. From this test object, 200 X-ray images spanning 360◦ are available. Each image has
the size of 200 × 40 pixels. The reconstructed volume contains 200 × 200 × 40 voxels. We executed
the iterative reconstruction algorithm SART [12] up to the 12th iteration step. After each iteration step,
we evaluated the whole volume providing the three materials of which the test object consists: m1 = 0.0,
m2 = 0.2, m3 = 0.4.

The second test object, as displayed in Figure 6(b), is described as “screw nut”. It is made of
aluminium (m2 = 0.0035) and contains a steel screw (m3 = 0.015). We generated three different series
of X-ray images spanning a limited angle; 90◦ (64 images), 130◦ (92 images) and 150◦ (107 images).
The standard deviation of the grey value yp is about 0.001, which is caused by noise. Each image
has a resolution of 256 × 256 pixels. From each series, we reconstructed the test object using SART
and evaluated the reconstructed volume after the 12th iteration step. The volume contains 192 × 256 ×
256 voxels.

Figure 6. Cross sections through both test objects perpendicular to the rotation axis.

(a) Test object ”cubes” (b) Test object ”screw nut”
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5.2. Visual Analysis of Approbatio

The first column in Table 1 shows cross sections through the reconstructed volume of the test object
“cubes” after 3, 6 and 12 iteration steps. As can be seen, the reconstructions are close to the original and
their sharpness is increasing with the iteration number. The corresponding approbatio, as pictured in the
second column, is also increasing with iteration number. Generally at the surface the reconstruction is
difficult, because some rays prefer the material of the cube while others favour air, which then results in
a low approbatio. Depending on the amount of material and air, the approbatio value varies, which is
reflected in dashed lines along the surface. Beyond the surface, approbatio is consistently high. The most
likely material density md (as) (i.e., the material that belongs to the approbatio as (md)) is shown in the
third column in Table 1. Obviously, it is close to the original in Figure 6(a).

Table 1. Cross sections through the reconstructed volumes of the test object “cubes” and
the corresponding evaluation. A higher value is always represented by a lighter greyness.
The reconstructions as well as the most likely materials are displayed in the grey level
window [0, 0.4], approbatio in [0.5, 1.0].

Iteration Reconstruction Approbatio as (md) Most likely material

step 3

step 6

step 12
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Similarly, Table 2 shows the results of the test object “screw nut” after 12 iteration steps. The fewer
X-ray images are available, the more the reconstructed test object is blurred and affected by artefacts.
In case of 130◦ as well as 150◦, the bad reconstructed areas get identified by their low approbatio.
When the X-ray images span only 90◦, the reconstructed test object differs drastically from the original
in Figure 6(b). Hence, hardly any voxel yields a histogram of projection error that is concentrated.
Even for the few good reconstructed voxels, the histograms spread out because the surrounding is
extremely affected by artefacts. At this point, the quality measure fails, but it fails to the right side:
The corresponding approbatio is low.

Table 2. Cross sections through the reconstructed volumes of the test object “screw nut” and
the corresponding evaluation. A higher value is always represented by a lighter greyness.
The reconstructions as well as the most likely materials are displayed in the grey level
window [0, 0.015], approbatio in [0.5, 1.0].

Angle Reconstruction Approbatio as (md) Most likely material

90◦

130◦

150◦

5.3. Average Approbatio

The apparent increase in quality while reconstructing the “cubes” is confirmed by the average
approbatio a. Figure 7 shows the course the average approbatio takes from iteration step ι = 1 to iteration
step ι = 12. It goes up to 97%. The original verifiable reaches 100%.

The expansion of bad reconstructed areas that was already observed in Table 2 find expression in the
average approbatio, which is only 35.1% (90◦), 56.1% (130◦) and 58.3% (150◦).
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Figure 7. Average approbatio course while reconstructing the test object “cubes” in 360◦.

5.4. Convergence

In the following, we analyse the behaviour of our evaluation method when the number of iteration
steps approaches infinity. For each voxel s the original value os is compared with the most likely material
density md (as). Introducing a sample space K = {k0, k1}, in which k1 represents a correct material
assignment and k0 a mistake, it follows:

ks = k0 if md (as) 6= os (11)

ks = k1 if md (as) = os (12)

Then, we define an ideal quality measure demanding k0 = 0 and k1 = 1, and observe the quadratic
meanE

[
(as − ks)2

]
of all voxels in the reconstruction of the “cubes” from iteration step ι = 1 to iteration

step ι = 12. By this we analyse the convergence of our evaluation method in Equation (13).

lim
ι→∞

E
[
(as,ι − ks,ι)2

]
= 0 (13)

Figure 8 shows the result for the “cubes”. The quadratic mean tends towards zero. In the present case,
our evaluation method converges.

Figure 8. Convergence test.

5.5. Receiver Operating Characteristics of Different Quality Measures

We define the Neyman–Pearson criterion of N = {n0, n1}

ns = n0 if as < λ (14)
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ns = n1 if as ≥ λ (15)

to binarise approbatio as on the basis of a varied threshold value λ (and 0 6 λ 6 1). The true positive
rate P (n1 | k1) results from counting all voxels that fulfil the conditions in Equations (12) and (15).
Similarly, the false positive rate P (n1 | k0) results from counting all voxels that fulfil the conditions in
Equations (11) and (15). Using these rates, we recorded the Receiver Operating Characteristics of the
“cubes” in Figure 9. From iteration step 3 to iteration step 12, the curve moves to a higher true positive
rate. The evaluation becomes more and more reliable. In the 12th iteration step, the curve is nearly ideal.

Figure 9. Receiver Operating Characteristics of approbatio evaluating the reconstruction of
the test object “cubes”.

The 12th iteration step is also tested with two existing evaluation methods; Censor [10] uses a
quality measure that is based on the difference between the reconstructed density of a voxel and the
next a priori known material density. In the following, we briefly call it “difference”. Batenburg and
Sijbers [8] discretise the reconstructed volume via thresholding and subsequently define all voxels whose
gradient comes to zero as “good”, the others as “bad”. We name this determination technique “binarised
gradient”. Furthermore, we tested the 12th iteration step with our own evaluation method skipping the
fusion (“approbatio without fusion”).

In Figure 10, the Receiver Operating Characteristic that follows from approbatio without fusion is
pictured in red. The evaluation via difference yields an identical curve, i.e., both quality measures are
suited to evaluate the reconstructed test object. The yellow dot results from determining with binarised
gradient. The false positive rate equals zero. The true positive rate amounts to 96.3%. Compared with
the other quality measures, the binarised gradient is marginally worse, but for safety reasons a low false
positive rate is more important than a high true positive rate. Hence, each quality measure reliably
evaluates the test object.

Equally, Figures 11, 12 and 13 summarise the Receiver Operating Characteristics measured with the
“screw nut”. It becomes visible that the true positive rate of each quality measure is reduced by the
limitation of the angle range and noise. Yet the difference turns out to be less suitable for evaluation:
There is no threshold λ that reaches a false positive rate of zero (apart from the maximum threshold,
which also produces a true positive rate of zero). The binarised gradient outputs a high false positive
rate that is 65.3% in case of 90◦, 38.0% for 130◦ and 19.8% for 150◦. Approbatio without fusion keeps a
false positive rate of zero while the true positive rate amounts to 22.9% (90◦), 52.5% (130◦) and 66.2%
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(150◦). The fusion actually improves the evaluation. The true positive rate increases up to 26.2% (90◦),
66.1%(130◦) and 79.7% (150◦).

Figure 10. Receiver Operating Characteristics of different quality measures evaluating the
reconstruction of the test object “cubes” after 12 iteration steps.

Figure 11. Receiver Operating Characteristics of different quality measures evaluating the
reconstruction of the test object “screw nut” from X-ray images spanning 90◦.

Figure 12. Receiver Operating Characteristics of different quality measures evaluating the
reconstruction of the test object “screw nut” from X-ray images spanning 130◦.
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Figure 13. Receiver Operating Characteristics of different quality measures evaluating the
reconstruction of the test object “screw nut” from X-ray images spanning 150◦.

6. Conclusions

In this paper, we have shown a sophisticated analysis of X-ray images. By handling each X-ray
crossing a selected voxel separately, very small inconsistencies between the reconstruction and the
measurement get revealed. Considering all these X-rays in equal weighting, we record a histogram.
This histogram reflects the reconstruction quality. For an inaccurate reconstructed voxel, the histogram
spreads out. For a generally good reconstructed voxel, the histogram is more concentrated around
zero. By counting all rays in a defined confidence interval around zero, we get a probability value
that expresses the current reconstruction quality.

We replace the reconstructed density of a selected voxel successively by the density of each a priori
known material that the object examined by X-ray consists of. For each replacement the histogram
is recorded. Hence, we are able to assign one probability value to each material. The resulting
discrete probability distribution over material density expresses the reconstruction quality again. In good
reconstructed areas, exactly the material density that really existed at the position of the selected voxel
while doing X-ray stands out with a high probability. In a more inaccurate reconstructed area, there is
no distinct maximum. We fuse the distribution under the terms of Yager, and choose the most likely
material. The corresponding probability value is introduced as quality measure, called “approbatio”.

Our experiment deals with two different test objects that are typical for industrial applications.
They are composed of several materials (e.g., aluminium and steel, surrounded by air) and analysed
in cone beam geometry. We assume a monochromatic X-ray source and ignore scattering. The influence
of noise is not analysed in detail.

For the first test object, ideal X-ray images of a 360◦ turn are available. From these images,
we reconstructed the test object using SART and evaluated the volume voxel by voxel after 3, 6 and
12 iteration steps. When the reconstruction is true to the original, our evaluation method outputs high
approbatio values. At the surface, the reconstruction is difficult, even after 12 iteration steps. Some rays
prefer air, others favour the material of the object. These inconsistencies cause low approbatio values.

The main focus of our work is the problem of limited angle. We reconstructed a second test object
from three different series of noisy X-ray images, each spanning a limited angle: 90◦, 130◦ and 150◦.
The smaller the angle range is, the more the reconstructed test object is blurred. Our experimental
results show that blurred areas reliably get detected by low approbatio values. For 130◦ and 150◦,
good reconstructed areas yield high approbatio values. When the X-ray images span only 90◦,
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the reconstructed volume is highly corrupted. Almost in the whole volume the evaluation method outputs
low approbatio values. This is a right-side failure.

For a further check of the reliability, we have recorded the Receiver Operating Characteristic of
different quality measures; approbatio (with fusion), approbatio without fusion, difference and binarised
gradient. For good reconstructions from ideal X-ray images, each approbatio (with fusion), approbatio
without fusion and difference exactly achieves a true positive rate of 100% and a false positive rate of
0%. With the binarised gradient, the true positive rate amounts to 96.3%. By evaluating test objects that
are examined by X-ray in a limited angle range, the advantage of approbatio becomes evident. Neither
the difference nor the binarised gradient reaches a false positive rate of zero. By using approbatio without
fusion, a false positive rate of zero is maintained while the true positive rate is 22.9% for the 90◦ case,
52.5% for 130◦, 66.3% for 150◦. Moreover, the probabilistic background of our evaluation method makes
possible to use the Dempster–Shafer theory and detect conflicts. Then, the associated fusion improves
the reliability of our evaluation method. The true positive rate increases up to 26.2% (90◦), 66.1% (130◦)
and 79.7% (150◦). At the same time the false positive rate still amounts to zero.

Furthermore, the average approbatio expresses the reconstruction quality of a whole volume.
While reconstructing a test object, the average approbatio steadily increases towards a maximum quality
that is 100% for ideal test objects examined by X-ray. Similarly, we observed the mean square
over iteration steps, with the result that it tends to zero. The convergence of our evaluation method
is confirmed.

In future works, we want to analyse the influence of the noise level in X-ray images in more detail.
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