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1 Introduction

With more and more traffic each year, the risk of accidents, congestion, longer travel
times, and other factors caused by an increased traffic volume affect transportation in
cities more and more. This problem can be solved by building more road infrastructure.
But this approach is not always feasible due to multiple factors like space constraints
and can even lead to an overall slowdown of traffic. This phenomenon is known as the
"Braess’s paradox" discovered by Arthur Pigou [Pig02] and refined by Dietrich Braess
[Bra68]. It describes that adding more roads to a network in which each entity chooses
its path selfishly can sometimes reduce overall performance [Bra68, Pig02].
As building new roads is not the only solution to the problem, Intelligent Transport
Systems (ITS) provides an alternative way to improve traffic conditions without the
need for new roads.
ITS aims to improve traffic flow by collecting and processing data using various appli-
cations like Traffic Management Systems, Transit Signal Priority, Emergency Vehicle
Preemption, and much more [QA13].
One of the key aspects of Intelligent Transport Systems is the prediction of traffic factors
such as speed, occupancy, etc. as these can be effectively used for the above-mentioned
applications.
Traffic prediction describes the process of predicting future traffic factors based on his-
torical data. Traffic prediction can be based on a road/network-wide- (macroscopic),
lane based- (mesoscopic), or vehicle-based scale (microscopic) with each scale describing
different characteristics of traffic and being used for different applications [ZYZ+22].
In recent years, research in traffic prediction saw a great amount of interest and lots of
different methods to optimize the task have been proposed, as highlighted by several
recent surveys [BCY22] [JL22] [ZYZ+22]. These algorithms range from model-based
methods in the early days to current data-driven methods, specifically deep learning
methods optimized for operating on graphs, as they are currently considered to be the
most promising approach [ZYZ+22].
These deep learning algorithms are normally trained on a selection of available real-life
datasets containing data from traffic sensors with the most popular being the METR-LA
and PeMS datasets [JL22]. These are only the most commonly used datasets, but other
datasets from other sources are also available. Also, other data can be used to perform
speed prediction like GPS data, Trip Data, weather data, and much more [JL22]. For
more information on this topic refer to [JL22] as it provides a comprehensive overview
of available data sources.
But as the amount of real-life data is limited, it doesn’t cover all possible scenarios, and
using simulations for testing models on specific scenarios like concerts or accidents from
which no or only a few public datasets are available, can provide a good addition to the
currently available training and testing datasets. It also has "the potential of modeling
unseen graphs though, e.g., evaluating a planned road topology." [JL22].
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2 Related Works

To achieve this a framework is needed that connects a traffic simulator with deep learning
libraries like PyTorch or Keras. Traffic simulators have been around for a long time with
multiple simulators being available and under active development until today. But as
most of them are not free, an open-source (or free) simulator is needed so that the
framework can be used by everyone. Therefore, SUMO is a good choice, due to it being
entirely open-source and also having extensive Python support [ALBB+18] making it
easy to integrate into a Python application.
This thesis aims to further explore the possibility of using traffic simulations to train
or test deep learning models for traffic prediction by using the open source, microscopic
traffic simulator SUMO (Simulation of Urban MObility) [ALBB+18]. For this, a general
framework for training/testing models using NumPy and SUMO will be proposed and
the general approach of using simulated traffic data for this use case will be further
discussed.

2 Related Works

The idea of using traffic simulations for traffic prediction is not new and has already
been applied in some works. Fukuda et al. [FUFY20] used the microscopic traffic sim-
ulation MATES [Yos06] to evaluate the performance of graph convolutional recurrent
neural networks under unusual conditions like accidents. Song Sang et al. [KZY+18]
successfully used SUMO to test a "reinforcement learning method to optimize the route
of a single vehicle in a network" [KZY+18].
SUMO has also successfully been used for deep learning use cases not directly related
to traffic prediction, like by Song et al. [SZL+22] who used a traffic simulation with
SUMO as the environment to evaluate deep reinforcement learning electric vehicle(EV)
dispatching algorithms with the goal of optimizing the efficiency of EV charging stations
[SZL+22].
While all these studies achieve great results, no source code of the software used to
connect the models with the simulation is publicly available. And the approach of using
data from a simulation for the training and testing of graph neural networks has not
been thoroughly discussed.
A couple of open-source solutions that connect traffic simulations and deep learning al-
ready exist. CARLA [DRC+17] is a 3D simulator developed specifically for autonomous
urban driving systems, including support for associated deep learning algorithms. A
more general approach is taken by FLOW [KPW+18] which connects SUMO with deep
reinforcement learning using rllab. This project however seems to be no longer under ac-
tive development, as development stalled after the end of 2020. Also, rllab, which is used
as the library to implement the deep learning algorithms, is officially no longer under
active development. Development on the community-driven project "garage" that con-
tinued development after the official shutdown has also stalled in the last years [mai23].
As most models currently proposed for traffic prediction are implemented in either Py-
Torch, Keras, or TensorFlow [JL22], the framework proposed in this thesis will aim to
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connect SUMO with these libraries using NumPy to allow existing models to use data
generated by SUMO with only minor modifications.
According to this research, there are currently no other open-source projects that con-
nect graph neural network models with traffic simulators using the currently most used
libraries for deep learning. This is also supported by Wang et al. [WJJ+21] who con-
ducted a literature survey on traffic prediction and found that "there are no open-source
libraries for unifying the entire pipeline consisting of data preparation, model design
and implementation, and performance evaluation"[WJJ+21] for simulated traffic data.
The proposed framework in the thesis is the first step to such a platform, enabling data
collection, simulation control, and evaluation specifically designed for traffic predictions.

3 Prerequisites and Underlying Basic Technology

The framework introduced in this thesis is based on two technologies: (one) SUMO,
which is the traffic simulator used to run the traffic simulation and (two) graph neural
networks. After the data is extracted from SUMO it is processed to be used with graph
neural networks, as they are the currently most promising approach for traffic prediction
[ZYZ+22].
In order to fully understand the framework and its functionality it is therefore important
to understand all these underlying technologies. This section will therefore introduce
both technologies and highlight all important aspects needed for understanding the
proposed framework.

3.1 SUMO

The simulation used for this thesis is the open-source traffic simulator SUMO originally
developed by the DLR (Deutsches Zentrum für Luft- und Raumfahrt) in 2001 [BBEK11]
and is now developed by the "openMobility Working Group at the Eclipse Foundation"
[SUM]. SUMO has already been used in many projects, especially within the research
fields of Vehicular Communication, Route Choice and Dynamic Navigation, and Traffic
Light Algorithms [KEBB12]
This section is supposed to give an overview of the main components and workflows in
SUMO and give a basic understanding of what SUMO is and how it can be used. This is
done as SUMO is an integral part of this thesis and framework and a good understanding
of all underlying components is necessary to fully understand all parts of this thesis. It
also especially highlights and explains the features used in the proposed framework.

3.1.1 Overview

SUMO describes itself as a "highly portable, microscopic and continuous multi-modal
traffic simulation package designed to handle large networks" [SUM]. It in itself however
does not consist of one single application, but is a whole suite of different applications
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3 Prerequisites and Underlying Basic Technology

and tools supporting the core simulation [KEBB12]. These tools are used for use cases
like road network generation, demand modeling, and much more as SUMO uses its own
format for networks and traffic data [KEBB12]. The general workflow for creating and
running a SUMO Scenario consists of the following steps:

• Creation of the road network either by hand or by importing data from other
sources like other simulators, OpenStreetMap, etc. It is usually represented as a
graph.

• Creation of traffic demand for the created network by either using one of several
tools provided by SUMO or public data provided by traffic authorities. It is saved
as a collection of individual trips for all vehicles appearing in the simulation.

• Running the simulation after the traffic network and its demand has been defined.

Of course, this describes only the most basic workflow. With more complex scenarios,
the workflow complexity can increase. For more information on each step, refer to the
sections below.

Each scenario can then be imported and run using SUMO. Each simulation (or scenario)
has a specific runtime which is defined by the number of trips, as each trip contains a
start time, a vehicle, and its path. Time is represented as simulation steps which usually
last/represent one second each (the length of a simulation step can also be customized,
but a value of one second is generally recommended). The simulation ends after the last
vehicle finishes its trip.

SUMO also includes an interface for communication with the simulator using Python
called "TraCi" [KZY+18], originally developed for evaluating Vehicular Ad-Hoc Net-
works, communicating with SUMO via a socket [WPR+08]. It allows the user to control
most aspects of the simulation and modify and retrieve lots of data from the simula-
tion. This library is used in this framework for communication between SUMO and the
framework.
The following two subsections will explain some of the above-mentioned steps in more
detail. For more information about creating simulations in SUMO, either refer to
[ALBB+18] or the official SUMO documentation.

3.1.2 Network Generation

A SUMO network is represented by a unidirectional graph with nodes and edges repre-
senting lanes of different kinds (road lanes, bike lanes, pathways, etc.). Each edge has a
variety of constant attributes assigned to it that describe numerous features about the
associated lane like speed, shape, permissions, etc. Consequently, nodes represent all
junctions where different lanes meet or where attributes of a lane (like the speed limit)
change, as the attributes for each edge of the graph are constant. [ALBB+18]
SUMO provides the user with a tool called NETEDIT which is a graphical interface for
creating, analyzing, and editing such networks. Since creating networks from scratch
is very time-consuming, SUMO also provides the tool NETCONVERT which can be
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3.1 SUMO

used to convert data from other sources including OpenStreetMap or OpenDRIVE to
scenarios usable by SUMO. [ALBB+18].

3.1.3 Demand Modelling

After the successful generation of the road network, the next step is the generation of
traffic demand. SUMO supports the definition of this by individual trips, flows, or as
routes [ALBB+18]. There are currently three ways to generate traffic demand in SUMO
[UCBBC20]:

• Create routes manually by defining each vehicle’s route by hand. Each route
consists of a list of IDs corresponding to the edges (=streets) on the vehicle’s
route.

• A quick way to generate trips is using randomly generated routes using the ran-
domTrips.py script provided by SUMO. The results of using this tool can however
be highly unrealistic.

• If more information about the scenario is available, SUMO provides applications
to generate trips from multiple different data sources, with some of the most pop-
ular being: (one) Origin/Destination Matrices. OD Matrices can be acquired
from traffic authorities, and be used to generate trips for SUMO using the tool
OD2TRIPS [ALBB+18]. (two) ACTIVITYGEN can generate trips using the net-
work file and a population definition. It supports the activities of school, work, and
free time and bike, walking, bus, and cars as modes of transport [WBF, ALBB+18].
(three) DFROUTER generates routes using data from traffic detectors like induc-
tion loops. This data can also sometimes be acquired from traffic authorities or by
one of the above-mentioned open source data sets [SUM23a, ALBB+18]. (4) JTR-
ROUTER can generate routes from traffic volumes and turning ratios at junctions
or interchanges [SUM23b, ALBB+18].

For more detailed information about each application, refer to the official SUMO doc-
umentation. The documentation also includes information about other methods and
tools not mentioned above. The choice of tool to be used for modeling the simulation
trips is mostly dependent on the data available to the user as some methods require
specific data that might not be available for the chosen network.
To assert the accuracy of the mentioned methods of demand generation, multiple stud-
ies have been conducted that compare the performance of select methods in different
scenarios. Urquiza-Aguiar et al. compared different routers used by SUMO for trip
generation using graph metrics using the financial district of Quito [UCBBC20] and the
access highways to Quito [UCGBBC19] converted from OpenStreetMap. Lastly, Ma et
al. [MHWS21] used the Jianghan Zone in Wuhan and ACTIVITYGEN in combination
with DUAROUTER to evaluate the accuracy of traffic simulated by SUMO.
All the above-mentioned tools are shipped with SUMO. But over the recent years other
methods to calibrate traffic simulators (not specifically focussing on SUMO) have been
introduced like Cadyts [Flö09] which "calibrates the disaggregate demand in the simu-
lation from readily available sensor data such as traffic counts" [Flö09].
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3 Prerequisites and Underlying Basic Technology

3.1.4 Induction Loops

The most important feature of SUMO for speed prediction is induction loops. SUMO
supports three types of traffic detectors (= induction loops): (one) Induction Loop De-
tectors (E1) measure data (like speed) on only one specific point on a specified lane
[SUM22a]. (two) Lane area Detectors (E2) collect data along a specific area on a lane
[SUM22b]. (three) Multi-Entry-Exit Detectors (E3) collect data between a set of entry
and exit detectors [SUM22c]. This section aims to describe the functionality and place-
ment of these detectors in SUMO as they form the core part of the proposed framework.
Therefore a deep understanding of some of their properties is needed to understand the
core parts of the framework.

All detectors are defined using a similar scheme in an additional XML file. The needed
attributes vary by detector type, but in general contain the ID of the detector, the ID
of the lane on which the detector is placed, the position of the detector on that lane,
the data aggregation period, and the file in which the output data should be written.
The position is here defined as the distance between the start of the lane and the detector
following the lane’s shape. The aggregation period describes the interval in simulation
steps, where data should be collected and averaged.

Detectors can either be defined by creating entries in the additional file manually or
by using Netedit [ALE16]. There is currently no way to place detectors automatically.
An example entry of a detector definition looks as follows:

<e1Detector id="<id>" lane="51_0" pos="42" freq="1800" file="output.xml"/>

The output data of each detector is then written into an XML file. This data again
varies between the different detector types and includes data like average speed, passed
vehicles, occupancy, etc.
The data of detectors can also be accessed using TraCi. TraCi allows the user to re-
trieve data of E1 detectors while the simulation is running. [Tra22] The most important
values that can be retrieved using TraCi are the mean speed, occupancy, and vehicle
count. This feature is used in the framework described in this thesis, which therefore
only supports E1 detectors.

3.2 Graph Neural Networks

During the ongoing research on traffic prediction, the latest trend is making predictions
using "graph neural networks". Graph neural networks extend the functionality of nor-
mal neural networks in order to improve the model’s performance on tasks based on
graphs.
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3.2 Graph Neural Networks

A graph neural network (at a high level) typically contains two types of features:

• The node features/embeddings are the features (=representation) of each node
in the graph. Node features can contain all kinds of data, similar to the input data
of normal neural networks. The node features can be represented, for example,
by a matrix of size (numnodes, numfeatures, features). In relation to graph neural
networks used in traffic prediction, these features are also called the temporal
information/features, as they describe the state of one node (=detector) at one
point in time (e.g. the average speed).

• The graph structure is the second major component of graph neural networks
and contains information about the graph’s structure. It can be represented as an
array of size (numedges, 2), containing all edges of the graph as source-target pairs.
In relation to graph neural networks used in traffic prediction, this structure is
also called spatial information/features.

Graph neural networks containing both spatial and temporal information are called
spatial-temporal graph neural networks or ST-GNNs. There are currently many types of
ST-GNNs proposed, which (according to a survey conducted by Nam Bui et al. [BCY22])
can be classified by their mathematical methods used as follows:

ST-GNN

Temporal Dependence
Modelling

Spatial Dependence
Modelling

Graph Attention
Network

Graph Convolutional
Network

Gated Graph Neural
Network

Spectral-based Methods

Spatial-based Methods

1D convolution

GRU/LSTM

Figure 1: Overview of ST-GNN based methods [BCY22].

For more information on each individual method, refer to [BCY22, JL22].
These methods can be used for various different use cases on a node-, edge- and graph
level. The basic underlying principle of each graph neural network is the so-called mes-
sage passing, which on very high-level works as follows:
(one) Collect all node features (also called messages) of neighboring nodes for each node
in the graph. (two) Aggregate all messages using an aggregation function (three) Pass
new messages through an update function (usually a neural network) [SRPW21]. For
more info about the fundamentals of graph neural networks refer to [SRPW21, Ham20].
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4 Requirements

This thesis will later use the so-called ST-GAT (Spatio-Temporal Graph Attention Net-
work) for testing the proposed framework. This Model uses both spatial and temporal
features and according to Figure 1 can be classified as a mixture of a "Graph Attention
Network" and "GRU/LSTM" as it uses an attention mechanism for the spatial and an
LSTM mechanism for the temporal features. For more detailed information about this
model refer to [ZYL19]

4 Requirements

SUMO already provides a vast toolset for simulating traffic and collecting data from the
simulation. But for the specific use case described in this thesis of extracting data from
the simulation and using it to train neural networks, additional infrastructure is nec-
essary. This section describes the additional requirements for the proposed framework,
which can not be covered by using SUMO alone. For more information on SUMO refer
to subsection 3.1 and [ALBB+18]

Continous historical data storage
SUMO itself only offers the collection of data for the last or current interval via TraCi
or for the whole simulation as an XML file after the simulation finishes. A requirement
of DeepSUMO is therefore to allow for continuous and historical data collection of data
from SUMO during simulation runtime.
The framework should be able to:

• Store all data collected from the simulation until the program terminates

• Continuously update/add new data when it becomes available

• Collect and update data dynamically during the simulation’s runtime

Real time interfacing
DeepSUMO should also provide a way to interact with the data collected by DeepSUMO
while the simulation is running to provide more possibilities for the user.
The framework should be able to:

• Offer a mechanism to interact with the simulation and associated data at any
point in time.

• Provide access to not only the simulation but also to the up-to-date collected data
throughout the simulation.

Create detector graph
SUMO does not offer much positional information about detectors. As most up-to-date
models require the relationship between detectors to be modeled as a graph it is also
one of DeepSUMOs primary requirements to have the ability to create such a graph
structure from the configured detectors.
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The framework should be able to:

• Create a data structure containing a graph consisting of all connectors

• Offer different metrics for connecting the graph (e.g. distance, Dijkstra)

• Allow the user to create their own metrics for defining the relationship between
two nodes

Easy and logical data access and integration
All the abovementioned data should be saved in a format specialized for use with deep
learning models and make it easy to access the data and integrate it into (existing) deep
learning models. Access to this data should also be unrestrictive.
The framework should be able to:

• Format and structure all data in an easy-to-integrate and understandable way

• Provide unrestricted access to all relevant data

Detector generation
SUMO provides no way to automatically place detectors on a road network. Placing
all detectors by hand can be tedious depending on the size of the network. So it is a
requirement for DeepSUMO to offer a way of automatically generating detectors on a
given road network to make the scenario generation easier.
The framework should be able to:

• Allow the user to automatically place detectors on a specific road network

• Place detectors in the network based on multiple parameters like distance, street
type, etc.

• Allow the user to adjust the parameters for the placement of detectors

Flow control
Another way to make the creation of scenarios easier is for DeepSUMO to have the
ability to control the simulation in a way that traffic demand varies by time of day and
weekday (e.g. on Monday at 8 am there are more cars on the road than on Sunday at
1 am). As modeling demand dynamically during the scenario generation can provide a
challenge, as most tools only provide a static stream of vehicles, and there is currently
no tool to dynamically scale the demand during simulation runtime.
The framework should be able to:

• Provide a way the control the amount of traffic in simulation based on the current
weekday and hour

• Define rules for the traffic demand in an easy-to-understand format

• Allow the user to configure the rules on which the traffic is adjusted

13



5 DeepSUMO

5 DeepSUMO

This section will initially introduce the proposed framework by highlighting its data
structure, context, workflow, and basic components in the subsections below. For more
information on each individual component, refer to subsection 5.4.

DeepSUMO is a framework, written in Python, created to extract and process traffic
detector data from SUMO in a way that it can be used with deep learning models for
traffic prediction. DeepSUMO is divided into two parts, the main application, which
collects/creates data from the running simulation, and an application that allows the
user to automatically place detectors on a given road network, as placing them by hand
can be (depending on the scenario size), very time-consuming [MHWS21].

The main application works by first creating a graph from the specified detectors by
either geographical- or Dijkstra distance (with the option to create your own strate-
gies) and then running the simulation. While the simulation is running DeepSUMO
collects detector data based on the interval stated in the detector declaration (subsub-
section 3.1.4). It stores and provides access to this data using NumPy in a way that
makes it easy to use the collected data with existing (and new) deep learning models, as
the interface is modeled after existing real-life datasets. The user is able to interact with
the simulation and the collected data at any time while the simulation is running using
so-called "modules" following the observer pattern (subsubsection 5.4.5). The client can
write their own modules that are then called in fixed periods of time. The following
subsections will describe these processes on a high level. For more detailed information
about the components and processes, refer to subsection 5.3 and subsection 5.4.
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5.1 Data model

5.1 Data model
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Figure 2: Data model of DeepSUMO

As DeepSUMO is a very data-centric framework it is important to have a basic under-
standing of what data DeepSUMO collects and how the data is structured.
Figure 2 shows a high-level overview of most of the collected data and how it is struc-
tured by DeepSUMO.
From SUMO it is possible to collect data such as configured detectors (and their at-
tributes), information about the road network, and much more. But this data is scat-
tered and it is one of DeepSUMO’s core functionalities to collect all relevant data and
structure and persist it in data structures that make it easy to use the data with deep
learning methods such as graph neural networks.
As SUMO does not provide any connectivity information about detectors, DeepSUMO
connects the detectors into a graph structure (for more information refer to subsubsec-
tion 5.4.1). This graph describes which detectors are relevant to each other (e.g. because
they are geographically close together) and therefore might influence one another. This
is done because an important part of all graph neural networks for traffic prediction is a
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graph (in this case of detectors) as mentioned in subsection 3.2. The information about
this graph is then saved using two main data structures: (one) in adjacency matrices
and (two) in an edge list. DeepSUMO uses multiple types of these structures capturing
different aspects of the graph to capture all necessary data. For more information on
this refer to subsubsection 5.4.1.
The measured speeds at each detector are saved in a so-called node feature matrix, as
seen in Figure 2. This matrix contains all detectors (=nodes) with their respective
measurements. As DeepSUMO collects multiple measurements from each detector over
the course of the simulation, this matrix contains data for all detectors over all their
collection intervals.
DeepSUMO contains three of these matrices as three different features from SUMO are
captured for each detector: speed, occupancy, and number of vehicles.

5.2 Context

scenario DeepSUMO

SUMO TraCi

starts

starts
uses

initializes/updatesuses

NumPy
initializes/updates

User
creates

starts

PyTorch
creates

uses

updates

sumolib

uses

initializes

Figure 3: Initial overview of DeepSUMO - Block Diagram

Figure 3 shows the relevant technologies used in DeepSUMO and how they interact with
each other on a high level. Each technology is responsible for the following:

User The user of the framework creates the initial scenario as described in subsubsec-
tion 3.1.2. He also starts DeepSUMO and creates the deep learning model.

PyTorch PyTorch includes the desired deep learning model. It interfaces with Deep-
SUMO using a custom dataset created from the data collected by DeepSUMO.
DeepSUMO also allows the use of other libraries, as the main interface to the data
collected by DeepSUMO is modeled using NumPy.
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NumPy NumPy is responsible for storing the edge index and node features collected
by DeepSUMO for later use with deep learning models. This data store can then
be used for creating datasets for use with deep learning models. For this reason,
NumPy was chosen as the technology for storing this data, as most up-to-date
libraries used for deep learning provide an easy way to import NumPy arrays into
their own data structures. This allows the data generated by DeepSUMO (and
therefore DeepSUMO itself) to be used with a wide variety of libraries used for
deep learning (e.g. PyTorch, Keras, etc.).

Scenario The Scenario contains all necessary information about the network like roads,
trips, traffic detectors, and much more. It is used by SUMO to run the simulation
and also accessed by DeepSUMO using sumolib to easily extract information about
the road network itself (like street names, speed limits, detectors, etc.).

Sumolib Sumolib is a Python library responsible for "working with SUMO networks,
simulation output, and other simulation artifacts" [SUM23c]. DeepSUMO uses
it primarily to extract information about the network, but also uses it for many
other applications.

SUMO SUMO is the traffic simulator used in DeepSUMO (for more information, refer
to subsection 3.1). It is used to run the traffic simulation. The simulation is
configured using the scenario and interfaces with DeepSUMO via TraCi

TraCi TraCi is the Python library used to connect SUMO with DeepSUMO. It allows
access to most of the simulation’s parameters and data and is used for simulation
control and retrieval of detector data.

DeepSUMO DeepSUMO is the core application that controls the simulation and re-
trieves data from detectors. It does this by using all technologies listed above.

The following sections highlight the main components/classes of the framework and
how they interact with each other. For this, first, a high-level overview of the order of
events will be presented to understand the general flow of the program. Secondly, each
component will be described in detail including important mathematical concepts used
to provide a deep understanding of the functionality of each component. Lastly, the
interaction between the components will be modeled on a low level to also provide a
deeper understanding of the component’s relationship with each other.
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5.3 Basic Flow

generate detector graph

start simulation

register modules

initialize data storage

initialization

Figure 4: Basic flow of initialization phase

The flow of DeepSUMO can be divided into an initial-
ization and runtime phase. During the initialization
phase, the framework creates all necessary data struc-
tures and creates and initializes all static objects needed
for further processing. The framework populates the
created data structures with data collected from the
simulation in the second phase. The second phase starts
after the simulation was started and lasts the entire run-
time of the simulation. This phase includes processes
like the collection of data, continuous control of the
simulation, running of modules, and more.
Figure 4 shows the initialization process on a high level.
Firstly the detector graph is created. This graph con-
tains all preconfigured detectors (for more information
refer to subsubsection 3.1.4 and subsubsection 5.4.1)
as nodes and their connections as edges. The edges
are created using different strategies. DeepSUMO ships
with two strategies.

go simulation step

process data

simulation
finished?

no

simulation runtime

new data
available?

yes

can module
update?

no

process
modules

yes

no

Figure 5: Basic flow of simulation phase

Nodes can either be connected by their geographi-
cal distance or by travel times between each other
using Dijkstra. Neighbors are determined by calcu-
lating the distance/cost from one node to all other
nodes and then applying a threshold to determine
which nodes are close enough to be neighbors. The
user can also create their own strategies for con-
necting the nodes.
Next, the data storage used to store all data col-
lected over the course of the simulation is initial-
ized.
Lastly, all configured modules are registered. Mod-
ules can theoretically also be registered while the
simulation is running, but it is recommended to
register all of them during the initialization phase.

Figure 5 shows what happens during the simulation
phase on a high level. The following operations are
executed on each simulation step.
Firstly SUMO simulates the next simulation step.
Secondly, the data is collected from SUMO and
processed/stored. The data, however, is not col-
lected at every simulation step but rather only at
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the steps corresponding to the end of an interval (corresponding to the detector’s ag-
gregation interval mentioned in subsubsection 3.1.4) as choosing different interval sizes
leads to inconsistent data (e.g. a SUMO detector interval of 60 steps and a data collec-
tion interval in DeepSUMO of 30 steps would lead to the data of each detector interval
being saved twice, as no new data is available).
After the data has been processed all configured modules update functions are called.
These, however (as the data collection) do not run at every simulation step. They run
according to an interval set by the user (e.g. every 60 simulation steps) as running mod-
ules (depending on their complexity) at every simulation step can slow down overall
performance dramatically. For more information on this refer to subsubsection 5.4.5.
The loop exits after the simulation is finished. Then the simulation is shut down and
further tasks using the collected data can be performed.
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5.4 Components

data_manager

sim_core

detector_graph_controller numpy_store_controller translation_controller

Figure 6: Most important classes of DeepSUMO

DeepSUMO consists of five core components, which are depicted in Figure 6. They
control the main workflow shown in subsection 5.3. Each of these components refers
to a concrete class used in DeepSUMO. Each of these components is supported by
other classes to extend their functionality and provide easy maintainability. The next
subsections will describe each of these components with their supporting classes in detail
to provide a deep understanding of each class’s functionality and basic structure.

5.4.1 Detector graph

The detector graph component is responsible for creating the graph structure, used by
the deep learning models, from the configured detectors. As detectors configured for
SUMO only contain information like their position relative to the lane they are on, the
lane, and other things (for more information refer to subsubsection 3.1.4) they do not
include any direct connectivity information. But, as most current deep learning methods
used for traffic forecasting, require a graph structure, a component is needed to create
such a structure containing all configured detectors connected as a graph.
The component consists of three main parts: (one) The node_connector. This class
contains all logic necessary to connect the detectors and save the resulting connectivity
information in appropriate data structures. The behavior used when connecting detec-
tors is defined by a cost function. This function can be individually configured using the
strategy pattern. (two) The node_connector_strategy class includes the function/strat-
egy used when connecting the detectors. (three) The detector_graph_controller class is
in some way a facade for the node_connector, as it controls access to the data structures
created by the connector. It also creates a NetworkX DiGraph from the collected data to
make working with the graph easier, since the raw graph data (stored by the connector)
is stored in arrays making it hard to interpret.
Figure 7 shows a detailed UML-Class Diagram of these classes. Each class will now
individually be explained in more detail.
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detector_graph_controller

- detector_graph: nx.DiGraph

- net: sumolib.net

+ __init__(strat: detector_connector_strategie,
 net: sumolib.net, settings: dict,
 translation: translation_controller): None

+ gen_ref_speeds(): dict[str, float]

+ set_strat(strat: detector_connector_strategie): None

+ update_graph(net: sumolib.net,
 translation: translation_controller): np.array

+ get_cost_adj_matrix(): np.array

+ get_binary_adj_matrix(): np.array

+ get_edge_list_by_index(): np.array

+ get_edge_list_by_sumo_id(): np.array

- setup_edges(): None

- setup_nodes(): None

node_connector

+ self_loops: boolean

- num_edges: int

- adj_matrix_cost: np.array

- adj_matrix_binary: np.array

- edge_list_sumo_ids: np.array

- edge_list_index_ids: np.array

+ __init__(strat: detector_connector_strategie,
  net: sumolib.net, translation: translation_controller): None

+ set_strat(strat: detector_connector_strategie): None

+ update(net: sumlib.net, translation:  translation_controller):
np.array

- construct_adj_matricies(net: sumlib.net, translation:
translation_controller): None

- construct_edge_list(translation: translation_controller):
None

- connector

1

detector_connector_strategie

+ threshold: int

+ __init__(threshold: int): None

+ get_cost(detector_a_id: str, detector_b_id: str, net:
sumolib.net): float

- strat1

distance_connector_strategie

+ get_cost(detector_a_id: str, detector_b_id: str, net:
sumolib.net): list[string]

dijkstra_connector_strategie

+ get_cost(detector_a_id: str, detector_b_id: str, net:
sumolib.net): list[string]

Figure 7: Class diagram of the detector graph controller component

5.4.1.1 node_connector
The node connector class is responsible for connecting all nodes(=detectors) together

using a configurable cost function. It is also responsible for storing the created data in
data structures that make it easy to access and understand the data.
The edges of the graph are calculated with a user-configurable cost function, which
describes the relationship between two nodes. This function is implemented as a class
that inherits the detector_connector_strategie. The user can choose which function to
use and can even create their own function as this part of the class is modeled after the
strategy pattern.
Each strategy/function consists of two main parts: (one) A threshold attribute, which
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5 DeepSUMO

is used by the node_connector class to construct the binary adjacency matrix. This
attribute is mandatory and describes the threshold that determines whether an edge
between two nodes should be created (if the value of the cost function is below the
threshold a new edge will be created). (two) An update method. The update method
is called by the node_connector class when constructing the edges of the graph. It
calculates the relationship between two nodes by calculating a cost value for each pair
of nodes. The bigger this value is the lower is the probability of the nodes being related.
To calculate this the method gets the following parameters: the two detectors (one
source and one target detector, as the graph is directed), as IDs to be used with TraCi,
of which the relationship should be calculated and the net object, which provides access
to the structure of the network used by SUMO using sumolib. When this function is
called it can be expected that SUMO (and the TraCi connection) is already initialized
and ready to be used.
DeepSUMO already contains two strategies by default, which can be used for connecting
the nodes.

Distance This strategy/function calculates the relationship of two nodes based on their
geographical location. It returns the distance between two nodes in meters.
This distance using the coordinates of each detector is calculated in the following
way:

dx = x0 − x1

dy = y0 − y1

distance = |
√

dx2 + dy2|
(1)

With [x0, y0] being the coordinates of the source-detector and [x1, y1] being the
coordinates of the target-detector. Getting the position of each detector so that it
can be used in this calculation presents another challenge as SUMO does not pro-
vide the coordinates of each detector. It instead only provides information about
the lane on which the detector is placed and the position in terms of meters after
the start of the lane (subsubsection 3.1.4). So for the calculation to work it is
necessary to calculate the position of the detector as two dimensional coordinates
from this information. This is possible since each lane’s shape in SUMO is mod-
eled by a polyline. The shape can be extracted using sumolib and is represented
by a list of two-dimensional coordinates. This, in combination with the position
attribute of the detector, allows for the calculation of the position of the detector
as coordinates from these two parameters.
The line’s shape can be divided into a series of vectors each defined by two coor-
dinates [xstart, ystart] and [xend, yend].
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vectora

vectorb

vectorc

Figure 8: Example of a lanes shape

It is possible to calculate the distance of each individual vector (using the same
equation as Equation 1) and add them up (starting at the start of the line) until
the resulting sum (=length of the line) is bigger than the position of the detector.
The detector then has to be positioned on the last added vector (for example, if
in Figure 8 each vector has a length of 10 and the detector has a position of 25, it
would be placed on vectorc, as 10 + 10 + 10 = 30 which is bigger than 25). After
the vector on which the detector is placed is known, it is possible to calculate the
exact position of the detector using the vector’s coordinates and the detector’s
position attribute.

dremaing = dvector − (dtotal − ddetector)
t = dremaing/dvector

xdetector = (1 − t)xstart + t ∗ xend

ydetector = (1 − t)ystart + t ∗ yend

(2)

With dremaining being the remaining distance on the vector until the position is
reached. dvector being the length of the vector on which the detector is positioned,
dtotal being the sum of lengths (including the target vector) of all vectors until the
target vector and ddetector being the position of the detector acquired from SUMO.
The position of the detector is then calculated as [xdetector, ydetector].

dtotal

dvector

dremaining

ddetector

Figure 9: Explanation of parameters from Equation 2

This calculation is done for both detectors, after which the distance between them
can be calculated using Equation 1. This strategy provides a quick and easy way to
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connect the nodes, but also has its drawbacks as it might connect two nodes that
are close to one another, but have no relationship with each other (for example
two streets/detectors with a river between them) [ZYZ+22].

Djikstra This strategy/function calculates the relationship of two nodes using the Dijk-
stra algorithm. The cost is hereby defined as the travel time between two nodes cal-
culated using the Dijkstra algorithm. The travel time is calculated using Sumolib’s
built-in Dijkstra function. But since it allows only calculations from network edge
(=road) to edge, and not from detector to detector the resulting travel time has
to be adjusted as follows:

tdijkstra = dijkstra(edgea, edgeb)
tadjusted = tdijkstra − posa/speeda − (lengthb − posb))/speedb

(3)

With tdijkstra being the travel time calculated using Dijkstra between the two edges
edgea, edgeb, corresponding to detectors a, b. This corresponds to the travel time
between edgea and edgeb. tadjusted being the travel time adjusted to the posi-
tion of the detectors according to their position attributes (subsubsection 3.1.4).
posa, posb represent the value of this attribute for detectors a, b respectively. lengthb

describes the length of the edge (=road) that detector b is positioned on and speeda

and speedb the reference speed for detector a and b.

The data collected using these functions is then stored on several data structures:

Adjacancy matrix The collected data is stored in adjacency matrices of two types: (one)
Cost; this matrix contains all detector-pairs cost values, as calculated by the cost
function, as an adjacency matrix of size (numdetectors, numdetectors). (two) Binary;
this matrix is composed of ones and zeroes, depending on whether the result of
the cost function of two detectors is above the configured threshold or not.
All these matrices are ordered in a way so that the indices of detectors in the matrix
correspond with the indices used when storing the node features, as it internally
uses the translation object to construct/fill the matrices (for more information refer
to subsubsection 5.4.3). This results in the ability to directly input the matrix into
a deep learning model (together with a dataset created from the collected data),
as the indices (representing the detectors) correlate with each other.

Edge list The collected data is also stored as an edge list of the shape (2, numedges).
This list contains all edges, each represented by a pair of IDs. DeepSUMO stores
two such lists, with each containing a different representation of the detectors
(one) SUMO IDs, which represent each detector using its ID used by SUMO (and
TraCi), and (two) indicies, which identify each detector with respect to its index
in the node features. The conversion of SUMO IDs to such indices is possible via
the translation_controller (subsubsection 5.4.3)
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5.4.1.2 detector_graph_controller
The graph controller class is mostly responsible for regulating access to the node con-

nector class. It provides user-friendly interfaces for (one) configuring the node connector
and (two) collecting data from it. It also has the ability to create reference speeds which
is a dictionary containing all detectors and the maximum allowed speed of the lane on
which they are placed.

5.4.2 Numpy Graph

The numpy graph component of DeepSUMO is a central piece of the software, as it is
responsible for the collection and storage of data from the simulation. The data is stored
as NumPy arrays, as these provide the biggest flexibility and decouple the data storage
from the library used to implement the deep learning model. NumPy was deliberately
chosen for this as it is widely used and libraries like PyTorch as well as Tensorflow/Keras,
which currently are the most used libraries for deep learning, both provide an easy way
to import data from NumPy [Ten22, PyT23].

numpy_graph_controller

- processing_order: list[str]

- reference_speeds: dict[str, float]

+ __init__(total_graphs: int, graph: nx.DiGraph,
 translation: translation_controller, ref_speeds: dict[str, float]): None

+ process_next_interval(): None

+ apply_moving_average(): None

+ get_edge_index(): np.array

+ get_speed_features(): np.array

+ get_occupancy_features(): np.array

+ get_vehicle_number_features(): np.array

numpy_graph_store

- node_features_speed: np.array

- node_features_occupancy: np.array

- node_features_vehicles: np.array

- edge_index: np.array

- curr_graph: int

- total_graphs: int

- number_of_nodes: int

- number_of_edges: int

+ __init__(total_graphs: int, graph: nx.DiGraph,
 translation: translation_controller): None

- generate_edge_index(graph: nx.DiGraph,
 translation: translation_controller): None

+ apply_new_node_features(new_features: list): None

+ apply_moving_average(): None

+ get_speed_features(): np.array

+ get_occupancy_features(): np.array

+ get_vehicle_number_features(): np.array

+ get_edge_index(): np.array

- numpy_store

1

Figure 10: Class diagram of numpy_graph component

5.4.2.1 numpy_graph_store
The numpy_graph_store class is responsible for storing and organizing the data col-

lected from SUMO. It stores the most necessary information for the training of deep
neural networks. The data is stored in two main data structures: (one) the edge in-
dex. The edge index contains the adjacency information of the detector graph. The
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numpy_graph_store stores this information as an edge list of size (2, numnodes). This
information however can also be accessed from the detector graph component of the
framework in various other formats (subsubsection 5.4.1). (two) The node features.
The node features are stored in three separate NumPy arrays. DeepSUMO collects the
speed-, occupancy-, and vehicle count data of each detector, as this is the data offered
by TraCi [Tra22]. Each of these arrays is of the size (total_graphs, numnodes). With
total_graphs being the maximum number of graphs that are created during the simula-
tion runtime. This number is typically calculated from the collection interval and overall
simulation length (e.g. with a simulation length of 3000 steps and a collection interval of
100 steps, 3000/100 = 300 graphs will be created during the simulation). And numnodes

being the number of nodes of the graph which equals the number of detectors.
These features are updated using the update method. This method takes in a list of
three NumPy arrays of size (numnodes) each. The list has to contain one array for each
of the features mentioned above and has to be in the following order: speed, occupancy,
and number of vehicles. The function does not check if these are in the correct order.
The store also assumes that this method is only called once per interval. It does not
keep track of the current simulation step and respective interval. Calling this function
more than once in one interval will lead to unexpected behavior, errors, and duplicate
data.
The store can optionally apply a moving average over the collected data to smooth it
out. To achieve this it takes the unweighted mean of n measurements around a central
data point for each collected data point.

5.4.2.2 numpy_graph_controller
The graph controller does similar things to the detector_graph_controller, in terms of it
acting like a facade and regulating access to the underlying graph_store object. It also is
responsible for properly initializing the graph store and the collection and preprocessing
of data from the simulation.
Because of some characteristics of the data provided by SUMO/TraCi, the data has
to be preprocessed before it is passed to the numpy_store object. The data has to be
altered in two ways:

• The occupancy value has to be corrected. This is because this value is cumulative
for each vehicle. This can result in values over 100% when multiple vehicles are
on the detector simultaneously [SUM22a]. The occupancy value itself represents
how long vehicles were present on the detector (in percent). To account for this
behavior the following calculation is done to correct the given occupancy value to
a value between 0 and 100%.

occupancycorrected = occupancySUMO/numvehicles (4)

With occupancycorrected being the corrected occupancy value, occupancySUMO be-
ing the occupancy value collected from SUMO, and numvehicles being the number
of vehicles that passed the detector.
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• The speed itself. If no vehicle passed the detector in an interval the average speed
returned by TraCi is 0. And if only one vehicle passed the detector and was slower
than the maximum allowed speed on that road TraCi will return the speed of that
car which is not an accurate representation of the average speed over the span of
the whole interval (e.g. if one interval is 60s long and the detector is placed on
a road with a speed limit of 50km/h and one vehicle passes the detector driving
30km/h, 30km/h would not be an accurate representation of the average speed on
the road since other vehicles would have been able to pass the detector at 50km/h
while the car was not on the detector). As this behavior also results in irregular
data (especially on roads with little traffic), the speed data is corrected in the
following way:

speedcorrected = occupancycorrected ∗ avgspeed + (1.0 − occupancycorrected) ∗ refspeed

(5)
With speedcorrected being the corrected speed, occupancycorrected being the corrected
occupancy value from Equation 4, avgspeed being the speed value collected from
SUMO and refspeed being the speed limit of the road on which the detector is
placed collected using the detector_graph_controller class paragraph 5.4.1.2.

The controller collects all necessary data from SUMO using TraCi, applies the before-
mentioned corrections, and passes them to the graph store object to be added to the
store.

5.4.3 Translation

The translation component is the smallest, but also very important component of Deep-
SUMO. The translation component bridges the gap between SUMO and the data used
for the deep learning models. This is needed because in SUMO an individual detector is
identified by an ID, which is represented by a string, while in deep learning models, each
detector is identified by an index (due to the node features and edge index being saved
in arrays), which is an integer. It is the translation component’s responsibility to (one)
provide a constant processing order containing all detectors, to make sure that detectors
are always added to the node features in the same order as well as making iteration over
them easier. This order is simply a list of SUMO detector IDs that internally defines
the order of detectors in the node features. (two) Keep track of which SUMO detector
ID corresponds to which index in the node features (and vice versa).

detector_blumenstr_01 detector_steigweg_01detector_blumenstr_02 [...] detector_n

0 1 2 n[...]

SUMO-ID

index

order

Figure 11: Explanation of translation component
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Figure 11 explains the before-mentioned parameters again in a more visual way. It shows
the SUMO-IDs (as strings) at the top, their corresponding index in the node features
at the bottom, and the role of the order attribute at the very top.
A usage example of this component would be:
DeepSUMO is initialized with a runtime of 6000 steps, a collection interval of 60 steps,
and 248 detectors. This would result in the creation of three arrays containing the three
node features of size (100, 248) each. The translation component now allows us to eas-
ily extract the node features for a specific detector, using the SUMO ID by obtaining
the corresponding index of the detector by using the get_index(sumo_id) function and
slicing the node feature array accordingly node_feature[:, index]. It also works the
other way around if the user, for example, needs more information (like the position,
corresponding street, etc.) about a detector at a specific index, it can be collected from
SUMO using TraCi and the SUMO ID acquired from calling get_detector_id(index).

translation_generator

- detector_to_index_buffer: dict[str, int]

- index_to_detector_buffer: dict[int, str]

- order: list[str]

+ __init__(): None

+ generate_dicts(): None

+ get_detector_to_index(): dict[str, int]

+ get_index_to_detector(): dict[int, str]

+ get_order_of_detectors(): list[str]

translation_controller

+ __init__(): None

+ get_detector_id(index: int): str

+ get_index(detector_id: str): int

+ get_order(): list[str]

- translation_gen

1

Figure 12: Class diagram of translation component

translation_generator
The translation_generator class is responsible for generating the dictionaries used for
translation as well as the processing order of detectors. It also buffers the created dic-
tionaries and order list for later use.

translation_controller
The translation_controller class is a facade for the translation_generator class and pro-
vides/regulates access to the underlying translation_generator object.
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5.4.4 Data manager

The data manager acts as a facade for the underlying controllers. It is the primary
interface for the user to access data from DeepSUMO. Therefore it houses and pro-
vides access to a net-, detector_graph_controller-, numpy_graph_controller- and trans-
lation_controller object. It also controls and manages the correct initialization of all
underlying controllers.

data_manager

+ settings: dict

- curr_processing_step: int

+ __init__(settings: dict, strat: detector_connector_strat): None

+ add_processing_step(): None

+ get_processing_step(): int

detector_graph_controller

[...]

translation_controller

[...]

numpy_graph_controller

[...]

+ detector_graph1 + numpy_store1 + translation1

Figure 13: Class diagram of data manager component

5.4.4.1 data_manager
The data_manager class is the primary interface for user interaction with DeepSUMO.
It provides access to all necessary controllers and the net object, initializes them, and
also saves the current processing step. DeepSUMO provides a function to increment
this value, however, it is strongly discuraged to use this function as they are already
automatically called by DeepSUMO and require no user interaction. Calling this method
can lead to unexpected behavior on modules or other applications that depend on the
accuracy of the curr_processing_step variable.
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5.4.5 Sim core

The simulation core is the central piece of the framework responsible for controlling the
simulation and general order of events in the framework. It makes sure all necessary com-
ponents are initialized and runs the simulation in a controlled manner.

simulation_core

- sumoCmd: string

- data: data_manager

- settings: dict

- curr_sim_step: int

- curr_processing_step: int

+ __init__(settings: dict, strategie: detetcor_connector_strategie,
launch_arguments; list[str]): None

+ start_simulation(): None

+ stop_simulation(): None

- go_simulation_step(): None

+ add_post_observer(observer: simulation_module): None

+ add_continous_observer(observer: simulation_module): None

+ set_connector_strat(strat: detector_connector_strategie): None

simulation_module

- trigger_step: int

+ __init__(step: int): None

+ get_trigger_step(): int

+ process_update(manager: data_manager): None

-  processing_observers0...*-post_observers0...*

Figure 14: Class diagram of simulation core component

The sim_core allows the user to interact
with the simulation and the framework
using simulation modules which are im-
plemented following the observer pattern.
The component ensures that all data com-
ing from the simulation has been fully pro-
cessed before running any modules. Each
of these modules contains two main parts
(one) a threshold value, which is used to
determine when the module is called, and
(two) an update method, which provides
access to DeepSUMO’s data by passing
a data_manager object and contains the
main logic of the module. The runtime of
each module is determined by its thresh-
old value. Each module is run periodi-
cally with the threshold value specifying
the frequency of the module in simula-
tion steps (e.g. a threshold value of 60
means that the module’s update function
is called every 60 simulation steps). Run-
ning modules too often is generally not
recommended, as running them (depend-
ing on their complexity) can reduce the
execution speed dramatically. Inside its
update method, each module has access
to (one) a fully initialized TraCi connec-
tion to interface with the simulation and
(two) a data_manager object containing all collected data up to the current simulation
step including the current simulation step (for more information on this refer to sub-
subsection 5.4.4). DeepSUMO currently contains three modules by default that can be
used as examples.

progress_module This module prints the overall progress of the simulation and pro-
vides the user with additional information about the last interval like its simulation
time. It also provides an estimation of the time remaining until the simulation is
finished. As this module internally does not track the current simulation step, the
interval of this module has to be simlength/100, so that the module runs exactly
100 times until the simulation is finished.
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print_module This module is mainly used for debugging and has the ability to print
out information about a specific detector (for example its node features etc.).

simulation_flow_control_module The simulation_flow_control_module has the abil-
ity to control the simulations "scale" attribute depending on the current weekday
and hour in the simulation. The "scale" attribute of the simulation defaults to 1.0.
It controls the number of vehicles/trips in the simulation with a trip consisting
of a vehicle and its designated path through the road network from a start to an
endpoint. If the scale value increases the number of vehicles increases, and if it
decreases, the number of vehicles in the simulation decreases. The module uses
this function to allow for different amounts of traffic volumes to be simulated at
different times of day without the need for the creation of specialized trip files
(subsection 3.1). This module allows the user to more easily create scenarios with
changing traffic densities by allowing the user to use tools like the OSMMapwizard
from SUMO, which creates scenarios from OSM, to create longer simulations, as
these tools, per default, do not consider the time of day.
The module acquires the current simulation time by using a start date and the
current simulation step as each step (per default) is one second. The current sim-
ulation time can then, therefore, be calculated by adding the current simulation
step in seconds to the start date.
The module then adjusts the simulation scale following a set of rules saved in a
dictionary of the type dict[tuple[tuple[int, int], tuple[int, int]], tuple[float, float]],
with each entry as follows:

((weekdaystart, hourstart), (weekdayend, hourend)) : (scalemin, scalemax) (6)

The key consists of a tuple containing two tuples. The first is the start weekday
and hour and the second is the stop weekday and hour. The weekday is represented
by a number between 0 and 6 (0 being Monday and 6 being Sunday) and the hour
by a number between 0 and 23 (0 being 0:00 and 23 being 23:00). These two tuples
form a period of time in which the scale of the simulation will be a random value
between the two values represented in the value attribute of its corresponding key.
An example of a rule goes as follows:

((0, 6), (0, 9)): (2.5, 3.0)

From monday morning at 06:00 (0, 6) until monday morning at 09:00 (0, 9) the
scale value will be somewhere between 2.0 and 3.0 (2.5, 3.0) due to the morning
rush. If no rule that matches the current simulation time can be found the scale
value will remain the same and will not be updated.

5.4.5.1 settings
In order to configure the behavior of DeepSUMO a couple of settings are needed. These
settings are saved in a dictionary and must contain the following entries:

• sumo_exec_path, which is the path to the sumo executable
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• sumo_config_path, which is the path to the config file of the desired simulation

• sumo_net_path, which is the path to the network file of the simulation

• sim_length, which is the total length of the simulation in simulation steps

• interval_length, which is the length of the collection interval of the detectors

• total_graphs, which is the total number of graphs that will be created/populated
during the simulation. This value does not need to be set by hand and can be
calculated as follows: sim_length//interval_length.

These settings must be passed to the simulation_core object in its constructor. It is
also necessary to pass the desired detector_connector_strategie at this point.

5.4.6 Detector generator

detector_xml_generator

+ net: sumolib.net

+ edges: list[sumolib.net.edge]

+ curr_id: int

+ valid_road_types: list[str]

+ __init__(net: sumolib.net): None

+ generate_list(): list[inductive_loop_base]

+ generate_xml(path: str): None

inductive_loop_base

- id: str

- lane: str

- pos: str

- freq: str

- file: str

- type: str

+ __init__(id: str, lane: str, pos: str, freq:str,
file: str, type: str): None

+ toXML(): string

detect_list0...*

Figure 15: Class Diagram of detector generator component

The detector generator is the second part
of the framework and can be used for
adding detectors onto an existing road
network. It places detectors using pre-
set spacing between them on select roads,
specified by their type. It also places a
detector at the beginning and end of each
lane (if its corresponding road is under the
allowed road types). [Ope23]. This com-
ponent was specially made for the use of
networks imported from OpenStreetMap,
as they come with detailed type informa-
tion.

5.4.6.1 inductive_loop_base
The inductive loop base class is a rep-

resentation of a detector element con-
tained in the detector definition file used
by SUMO (subsubsection 3.1.4). It con-
tains all necessary attributes and can cre-
ate the XML-Definition of a detector as a
string. This data includes the id, lane, po-
sition, frequency (=interval size), output
file, and type of detector.

5.4.6.2 detector_xml_generator
The detector XML generator is a compo-

nent that is used to create all necessary
detectors and create an XML file contain-
ing their definitions to be used by SUMO.
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The program creates the detectors by looping over all roads of the network, checking
if their type is valid by checking if the road type is contained in the valid_road_types
attribute, and (if it is a valid road type) creating detectors for each lane of the road cor-
responding to the set spacing. The object internally creates a list of inductive_loop_base
objects and then creates the XML-file by using the objects toXML() method. The al-
lowed road types are saved in the valid_road_types attributes as strings. Each string
is formatted as "<key>.<value>" with the key and value values acquired from the key,
value pairs in [Ope23].
The detectors are placed on a lane by first calculating the length of the lane using the
first part of Equation 2. This value however has to be corrected as in SUMO each lane
inherits its length (not shape) from its corresponding edge/road resulting in slightly in-
accurate lengths. This is because, depending on the shape, the individual lane can have
a different length than the corresponding road. So if the length calculated by SUMO
is smaller than the length calculated by DeepSUMO the length used for the detector
creation is set to the length from SUMO and if the length calculated by SUMO is bigger
than the length calculated by DeepSUMO the length used for the detector creation is
set to the length from DeepSUMO to avoid problems with the creation of the detector
graph.
The program then creates detectors using the configured spacing along the lane until the
length of the lane is reached and finally creates one additional on the lane’s start and end.
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5.5 Advanced Flow

After a more detailed understanding of each component/class is established, this subsec-
tion will focus on presenting the relationship between them in more detail by describing
the flow and order of events in more detail than in subsection 5.3. This will then
be followed by a usage code example to conclude the description of the framework.

set up settings

user

init translation

translation_controller

set up order

translation_generator

set up dictionaries

translation_generator

create detector graph

detector_graph_controller

create nodes

detector_graph_controller

connect nodes

detector_graph_conector

generate matricies

detector_graph_conector

init numpy store

numpy_graph_controller

create node features

numpy_graph_store

create edge_index

numpy_graph_store

register modules

sim_core

intialize SUMO

sim_core controlled by data_manager

Figure 16: Detailed flow diagram of initialization phase

Figure 16 shows a low-level diagram of the
order of events in the initialization phase
first introduced in Section 5.3. The user
first sets up the settings according to the
specification in section 5.4.5.1. After the
user sets up the settings, he constructs the
simulation_core object using the before-
created settings and a specific connector
strategy for creating the detector graph.
This object then internally first initializes
and starts the simulation using the param-
eters in the settings object. After the sim-
ulation (and TraCi) are started the transla-
tion_controller is initialized as it provides
functionality that is needed to initialize
both the detetcor_graph and numpy_graph.
The translation object then internally first
creates/sets the processing order of detec-
tors (=order attribute) and then creates the
dictionaries used for translation using the
before-created processing order.
After the translation component has been
initialized the detector graph is cre-
ated to generate the NetworkX graph
and adjacency information needed for the
numpy_store component and deep learning
models. This is done by first creating all
necessary nodes for the NetworkX DiGraph.
After which all nodes (=detectors) are con-
nected using the specified connector and
saved in various formats/matrices (subsub-
section 5.4.1) for further use. In this step,
the adjacency information is also added to
the DiGraph.
After the detector graph has been created
the numpy_store can be initialized.
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For this first, the node feature arrays are created corresponding to the settings and
filled with zeroes. Secondly, the edge index is created and filled according to the in-
formation collected by the detector graph and translation object. After all internal
components are initialized, the user can register modules (which are used for user
interaction with DeepSUMO’s data and the simulation) using the sim core compo-
nent after which the framework is operational and the initialization phase is complete.

simulation
finished?

curr_sim_step
% step_size = 0

no

collect + add detector data
for current batch (avg)

yes

continous module
processing

based on observer

all modules
processed?

curr_sim_step
% threshold = 0no

process module
based on traci + data manager

yes

no

data
processing
sim to numpy

yes

start

end
yes

sim loop

no

Figure 17: Detailed flow diagram of runtime phase

Figure 17 shows a more de-
tailed flow diagram of the simula-
tion/runtime phase of the frame-
work. After entering the phase
(after successfully completing the
initialization phase) the frame-
work enters a loop until the sim-
ulation is finished.
On each simulation step, the
framework firstly checks if an-
other collection interval has passed
by comparing the current simula-
tion step and interval size (e.g. if
the collection interval is 60 steps,
the framework would process new
data at steps 60, 120, 180, etc.).
If new data is available (one in-
terval has passed) the framework
collects the data and processes it
into the numpy_store using the
before-mentioned components.
Afterward, all registered modules
are checked by comparing the
current simulation step and the
module’s trigger value and run if
the simulation step is a multiple
of the trigger value by calling the
modules update function.
This process is repeated until the
simulation is finished. After the
simulation finishes all configured
post-processing modules are run
once, after which the simulation
and TraCi are stopped, and the
runtime phase ends.

35



6 Example

6 Example

After DeepSUMO has been introduced and all components and their interactions have
been explained in detail this section will give an example of how to use the framework.
A graph neural network model will be trained and tested using the extracted data. This
section aims to show how to use DeepSUMO and its functionality in an application and
ensure that DeepSUMO works properly.
For this first, the graph neural network model used in this example will be described.
Second the code for generating and running a scenario using DeepSUMO will be pre-
sented and explained. Last, the created scenario will be demonstrated using DeepSUMO.
The code explained and used in this section is also available in the DeepSUMO repository
as the "celle_example" under examples/celle_example.

6.1 Pre Conditions

This section will present an example run-through of DeepSUMO from the scenario gen-
eration to the simulation, model training, and analysis. The model used in this example
is the ST-GAT model, which is a "Deep Learning Approach for Traffic Forecasting" by
Zhang et al. [ZYL19]. The model works by combining a graph attention mechanism for
the spatial features with an LSTM (Long short-term memory) network for the tempo-
ral features. [ZYL19]. This model was chosen for its very well-documented PyTorch
implementation by Julie Wang, Amelia Woodward, and Tracy Cai, which made it easy
to understand and adapt the code to use data generated by DeepSUMO instead of the
"PeMSD7" Dataset [WWC22, WWC23].
The original code has been slightly adapted to work best with DeepSUMO. These mod-
ifications include (one) a new dataset using data from DeepSUMO as the data source,
and (two) a rework of the visualization tools simplifying them and reducing the number
of needed settings parameters. The core part of the framework (= the training process
and model itself) is left original and has not been modified. The code for the model and
its direct infrastructure can be found in the package src/torch_geo/*
The model uses two types of features, the spatial features (which define the structure
of the graph) and the temporal features (which for example define the speeds at each
node/detector of the graph).
The spatial features are input into the ST-GAT model as an edge list. This list is repre-
sented by a tensor of size (2, num_edges) and contains all edges of the graph as a pair
of source and target nodes.
The node features/temporal features are saved using the so-called "Speed2Vec" repre-
sentation [ZYL19] which uses a sliding window to capture the temporal features as node
embeddings. This window is simply a collection of the F previous measurements of a
datapoint, represented by a vector. The following example depicted in Figure 18 will
highlight how the sliding window mechanism for F = 3 works [WWC22].
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15:30 15:45 16:00 16:15 16:30

Figure 18: Explanation of sliding window/Speed2Vec [WWC22]

This information can then be saved in a three-dimensional feature matrix of size
(numtimepoints, F, numnodes) for all nodes and datapoints in the dataset [WWC22, ZYL19].

6.2 Code

The first step is creating/obtaining a SUMO scenario. This can be done in various ways,
as partially described in subsection 3.1. But for the reason of simplicity, this explana-
tion will obtain the scenario from OpenStreetMap using the import tools provided by
SUMO.
To obtain a scenario from OpenStreetMap we will use the tool "OSMWebWizard". After
opening the program, a webpage will open. Here we select the area that we want to
convert and adjust the simulation duration to the desired runtime. As traffic prediction
usually aims for longer durations it is recommended to choose long runtimes of 2419200
steps, which equals one month, or up. If desired, other parameters (like simulated vehi-
cle types, road types, etc.) can be set up here as well before generating the scenario files.
The scenario files can then be generated by clicking on the "Generate Scenario" button.
Depending on the size and length of the scenario and the speed of the computer, this
can take some time.
After generating the simulation, we use the created files for the next step.

It is now possible to generate detectors on the created network using the writer tool
packaged with DeepSUMO as follows:

1 net = sumolib.net.readNet("<path to net.xml>")
2
3 gen = detector_xml_generator(net)
4 gen.generate_xml("<path to output file >")

Listing 1: Code to generate detectors on network

This will generate a file containing all detector definitions according to subsection 3.1
and paragraph 5.4.6.2. During testing, it was discovered that this method of generating
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detectors in combination with current deep learning models that are tuned to work on
real-life datasets can lead to poor training performance. This is because most of the
detectors are placed on parts of a road where not much traffic/congestion happens.

Figure 19: Comparison of observed max speeds on two roads

This phenomenon is visualized in Figure 19. Figure 19 shows the measurements of two
detectors in the network over the course of 1000 measurement intervals (of five minutes
each). The x-axis shows the interval and the y-axis represents the measured speed at
the detector during the interval. The intervals are ordered chronologically (e.g. interval
0 being from 8:00 am to 8:05 am, 1 being from 8:05 am to 8:10 am, and so on).
The left graph represents a detector without much (if any) traffic resulting in only
measuring one speed (= maximum allowed speed) for the entire length of the simulation
(because no or very few vehicles pass it). The right graph shows a detector with more
traffic, resulting in a much more diverse graph. It has been observed that including
detectors without much traffic (like the left graph) might lead to extreme underfitting in
cases where the speed actually changes (like on the right graph) with currently available
graph neural networks as illustrated in Figure 20.

Figure 20: Comparison between predictions using a reduced dataset and full dataset
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Figure 20 shows this underfitting. The graph’s basic structure is the same as in Figure 19.
The graphs include two curves each with the orange one being the actual measurements
of the detector and the blue one being the predictions of the model. Both graphs are
created with the data from the same detector using two models with the same hyper-
parameters but different training datasets. The left graph gets the predictions from a
model using the full dataset including all detectors. The right one gets the predictions
using a model which was trained with a dataset containing only detectors having a vari-
ance greater than 1.0.
It can be seen that the predictions in the left graph are worse than in the right graph
due to underfitting caused by the extra detectors in the dataset.
To overcome this issue it is recommended to only use these detectors as baselines.
One way to achieve good results is by running the simulation once (at a reduced length)
and filtering out all detectors (by removing them from the definition) with a variance of
less than a certain threshold (e.g. 1.0), improving the model’s performance drastically
as illustrated in Figure 20.

The file containing the detector definitions then has to be added to the root of the
scenario files and added to the simulation by modifying the .sumocfg file by adding the
file as an additional file as follows:

1 <input>
2 <net−file value=" [...] "/>
3 <route−files value=" [...] "/>
4 <additional− files value=" [...], <filename/path>"/>
5 </input>

Listing 2: XML-Code to show where additional file is placed

After this, the scenario is complete and ready to be used with DeepSUMO.
When using DeepSUMO, the first step is to create a settings object containing all settings
needed for running DeepSUMO and the desired deep learning model (if needed). All the
framework settings have to be present in order for DeepSUMO to execute successfully. It
is assumed that the settings object is set up correctly. Not including values or including
wrong values will lead to unexpected behavior.
The model settings do not contain all settings of the original implementation of the
ST-GAT model, as the testing process has been simplified resulting in some settings not
being needed anymore.

1 settings : dict = {
2 # −−−−− framework settings −−−−−
3 "sumo_exec_path": # path to SUMO executable
4 "<path to sumo executable>",
5 "sumo_config_path": # path to the config file of the simulation
6 "<path to sumo config file >",
7 "sumo_net_path": # path to the net file containing the network definition
8 "<path to net.xml>",
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9
10 "sim_length": 2419200, # total length of the simulation
11 " interval_length ": 300, # size/length of one aggregation step
12
13 # −−−−− model settings (hyperparameters) −−−−−
14 "N_HIST": 9, # number of preceding timesteps
15 "N_PRED": 9, # number of prediction timesteps
16 'WEIGHT_DECAY': 5e−5,
17 ' INITIAL_LR': 3e−4,
18 'DROPOUT': 0.2,
19 'CHECKPOINT_DIR': './runs',
20
21 'BATCH_SIZE': 10,
22 'EPOCHS': 100
23 }
24 settings ["total_graphs"] =
25 int( settings ["sim_length"]) // int( settings [" interval_length " ])

Listing 3: Code to set up settings object

Next, the simulation core has to be instantiated. The simulaton_core object needs the
before-created settings object and the desired connector strategy in order to initialize
all components successfully. After the simulation core has been created the user should
register all desired modules using the add_continous_observer and add_post_observer
methods.

1 core = sim.simulation_core( settings , distance_connector_stategieV2(50))
2
3 observer_1 = progress_module(settings["sim_length"] // 100)
4 observer_2 = simulationFlowControlModule(60)
5
6 core .add_continous_observer(observer_1)
7 core .add_continous_observer(observer_2)

Listing 4: Code to initialize DeepSUMO

After all modules have been added and the simulation core has successfully been ini-
tialized DeepSUMO is ready. The simulation can then be started using the following
command:

1 core . start_simulation ()
Listing 5: Code to start DeepSUMO

DeepSUMO now runs the simulation including all modules and data collection. The
function automatically finishes after the simulation and all post-processing modules.
The collected data is now fully available. This example uses a slightly modified version
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of the original dataset used in the ST-GAT implementation to adapt it to DeepSUMO
as a data source. The dataset is created and then split into training-, validation- and
test data loaders as follows:

1 data = data.
2 adaptive_speed2vec_dataset(core.get_data(), settings [" total_graphs "])
3
4 train_threshold = int( len(data) ∗ 0.8)
5 valid_threshold = int( len(data) ∗ 0.9)
6 test_threshold = int( len(data) ∗ 1.0)
7
8 train_loader = DataLoader(data[:train_threshold ], shuffle =False,
9 batch_size=settings ["BATCH_SIZE"])

10 valid_loader = DataLoader(data[train_threshold: valid_threshold ],
11 shuffle =False, batch_size=settings ["BATCH_SIZE"])
12 test_loader = DataLoader(data[train_threshold: test_threshold ],
13 shuffle =False, batch_size=settings ["BATCH_SIZE"])

Listing 6: Code to create and split dataset

The train-, valid-, and test thresholds can be individually set as desired. The values
above only serve as an example. After all data loaders have been created the training
process can be run by calling:

1 device = 'cuda' if torch .cuda. is_available () else 'cpu'
2 print (f"Using {device}")
3
4 model = model_train(train_loader, valid_loader , settings , device)

Listing 7: Code to set device for training

After training the model it is now possible to evaluate its performance. The following
code will explain how to plot the test data and model predictions side by side.
To make plotting easier the first step is to get the test data and model predictions in an
easy-to-plot format. In this case, the test data and predictions are presented as arrays
of size (numintervals, numnodes, npred) in chronological order. This is accomplished by the
following code in Listing 8.

1 model.eval()
2 model.to(device)
3
4 for i , batch in enumerate(test_loader ):
5 # get predictions from model
6 # shape −> (batch_size ∗ num_nodes, n_pred)
7 batch = batch.to(device)
8 with torch .no_grad():
9 pred = model(batch, device)

41



6 Example

10 truth = batch.y.view(pred.shape)
11
12 # all values have been normalized using the z−score method,
13 # so they have to be unnormalized again for evaluation
14 truth = un_z_score(truth, test_loader . dataset .mean,
15 test_loader . dataset .std_dev)
16 pred = un_z_score(pred, test_loader. dataset .mean,
17 test_loader . dataset .std_dev)
18
19 truth = batch.y.view(pred.shape)
20 if i == 0:
21 # initialize collection variable with zeroes on first batch
22 # shape −> (num_batches, batch_size ∗ num_nodes, n_pred)
23 y_pred = torch.zeros( len( test_loader ),
24 test_loader .batch_size ∗ settings ["N_NODE"], pred.shape[1])
25 y_truth = torch.zeros( len( test_loader ),
26 test_loader .batch_size ∗ settings ["N_NODE"], pred.shape[1])
27 # append data from current batch to data from other batches
28 y_pred[i , :pred.shape [0], :] = pred
29 y_truth[ i , :pred.shape [0], :] = truth
30
31 # reshape into a more readable format
32 # (num_batches, batch_size ∗ num_nodes, n_pred)
33 # −> (num_intervals, n_node, n_pred/n_hist)
34 y_pred = y_pred.reshape(len(test_loader ) ∗ 50,
35 settings ["N_NODE"], 9)
36 y_truth = y_truth.reshape(len( test_loader ) ∗ 50,
37 settings ["N_NODE"], 9)
38
39 # cut off the last elements if there are fewer data points in the data as
40 # maximum batch−size (because they are 0)
41 y_pred = y_pred[:len( test_loader . dataset ), :, :]
42 y_truth = y_pred[:len( test_loader . dataset ), :, :]

Listing 8: Code to put predictions ofdetectors in a sequence

The code in Listing 8 transforms the data by iterating over each batch of data included
in the test data loader. For each batch, it does the following: first getting the predictions
from the model and the real values from the current batch. The predictions and real
values are both of shape (batch_size ∗ numnodes, npred)
If the first batch is being processed, two arrays with the shape (numbatches, batch_size ∗
numnodes, npred) are initialized with zeroes to collectively store the data from all batches.
After this, the data is unnormalized and added to the collection arrays.

After all batches have been processed, the arrays containing the collected data are re-
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shaped into their almost final shape of (numbatches ∗ batch_size, numnodes, npred) making
the data much more readable and easier to work with.

It can sometimes happen that the collection array is not completely filled and tailed by
zeroes. This happens when the number of actual data points stored does not equal the
maximum number of data points that can be stored. For example: If 123 data points are
included in the test data loader with a batch size of 50 the collection array is initialized
with the size (3, 50∗numnodes, npred). This allows a total of 150 data points to be stored.
But, as only 123 data points are available the last 27 data points are still filled with
zeroes from the initialization of the array.
These data points are removed in the last step resulting in the final shape of
(numintervals, numnodes, npred).

After the data has been collected it can be easily plotted as follows:
1 s1 = []
2 s2 = []
3 # get a random node
4 target = random.randint(0, settings ["N_NODE"] − 1)
5
6 # get name of street associated with chosen detector
7 sumo_id = core.get_data(). translation .get_detector_id( target )
8 target_lane_id = traci . inductionloop .getLaneID(sumo_id)
9 target_lane : sumolib.net . lane .Lane = core.get_data().net.getLane(target_lane_id)

10 target_edge: sumolib.net .edge.Edge = target_lane.getEdge()
11
12 # get predictions and truth from the arrays and only take the first prediction
13 # as the model predicts a series of 9 timesteps
14 for i in range(len(y_pred)):
15 s1.append(y_pred[i ][ target ][0] ∗ 3.6)
16 s2.append(y_truth[i ][ target ][0] ∗ 3.6)
17
18 plt . title (target_edge.getName())
19 plt . plot (range(len(y_pred)), s1, label ='pred')
20 plt . plot (range(len(y_pred)), s2, label ='truth ')
21 plt . xlabel ("step")
22 plt . ylabel ("speed")
23 plt .show()

Listing 9: Code to plot predictions and truth of random detector

The code in Listing 9 plots the data created in Listing 8 by doing the following: First, a
random node is chosen by choosing a random number from the interval (0, numnodes−1).
This number is the index which indexes a detector at the node feature level.
Next, some information about the detector is collected. To collect data about the detec-
tor from SUMO it is necessary to first retrieve the SUMO-ID of the detector using the
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6 Example

translation component of DeepSUMO. After the SUMO-ID has been retrieved the lane
on which the detector is placed is queried from SUMO and the name of the associated
street is extracted.
After the street name has been collected two sequential lists are created by extracting
the first prediction timesteps and reference values from the data created in Listing 8
for a configurable number of consecutive intervals. This works by iterating through the
arrays and adding the first prediction of the chosen detector (since in this case the model
predicts a total of nine timesteps) for each interval to a list.
After the lists are created they are plotted using PyPlot.

The full code can also be found as a jupyter notebook in DeepSUMO’s example folder
(examples/celle_example/example.ipynb). The next subsection will take this code, run
it using an example scenario and analyze the results.

6.3 Results

The area chosen for this test scenario is the area west of the railway station of the
German town "Celle" and is shown in Figure 21. The scenario has been generated using
the OSMWebWizard and has not been corrected (so some junctions might be wrong).

Figure 21: Screenshot of scenario
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6.3 Results

The simulation has a length of 2419200 steps, which (with a simulation step size of 1s)
equals one month. The detectors have initially been generated using the tool included
with DeepSUMO and have then been filtered by their variance being bigger than 1.0
over the course of one week (604800 steps) of simulation. The nodes of the graph are
connected by their geographical distance to each other being smaller than 50m.
All detectors have an aggregation interval of 300 steps (= 5 minutes) and there are a
total of 274 detectors in the simulation.
The demand in the simulation was initially generated using random trips but is contin-
uously controlled by a simulationFlowControlModule during the simulation runtime.
The detector graph is created by connecting nodes with a geographical distance smaller
than 50 meters from each other, resulting in a graph with 274 nodes and 2338 edges.
The hyperparameters of the ST-GAT model are chosen to closely resemble the origi-
nal values by the creator with the only difference being increased dropout to reduce
underfitting.

Parameter Description Value
BATCH_SIZE Batch size of data loader 50
EPOCHS Epochs of training 60
WEIGHT_DECAY 5e-5
INITIAL_LR 3e-4
N_NODE How many nodes? 274
DROPOUT Dropout 0.6
N_PRED Forecast how many timesteps? 9
N_HIST How many historical timesteps are available? 12

The simulation is run, after which the model is trained with the abovementioned pa-
rameters using the code described in subsection 6.2. Evaluating the model results in the
following prediction:

Figure 22: Results of test run using the ST-GAT model
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7 Discussion

Figure 22 shows the model’s predictions (blue) and the data collected by DeepSUMO(orange).
The basic structure of the graph is again the same as in Figure 19 and Figure 20. The
graph covers a timespan of about three days. A Friday, a Saturday, and a Sunday. It
shows some interesting aspects of the traffic captured by DeepSUMO. It shows the night
before Friday (until approx. step 50) with relatively high average speeds, the day after
(until approx. step 250) with much more traffic and therefore a lower average speed,
and the night after with, again, higher average speeds. It shows the same pattern for
the weekend as well, but with a higher average speed during the day than on a weekday,
due to fewer cars being on the road.

Overall the model performed well in capturing the general direction of traffic speed,
despite having difficulties with underfitting in the more detailed and extreme regions of
the data (especially between steps 250 and 380 in Figure 22). The model finishes with
an MAE (mean absolute error) of 0.3975, an RMSE (root mean square error) of 0.6965,
and a MAPE (mean absolute percentage error) score of 3.511 for the validation dataset.
It also shows that DeepSUMO was able to collect the data from the simulation correctly.
The observed underfitting, in this case, can be caused by several reasons:

• Since the training data only ranges one month, the total amount of data is rela-
tively low.

• The hyperparameters have not been adjusted correctly (due to time constraints)

• The data overall is too noisy and the model is not complex enough to capture the
fluctuations. This could be fixed by implementing more advanced algorithms for
smoothing the input data

But most of these issues can be resolved by further analyzing and optimizing the model
and scenario to achieve a better training result. But this example shows that it is possible
to train graph neural networks with data obtained from a traffic simulator successfully
and that DeepSUMO is able to extract the data and feed it into a neural network.

7 Discussion

Now that a framework for working with simulated data in graph neural networks has
been proposed, this section will first discuss the general approach of using simulated
traffic data, in contrast to real-life datasets for the training and testing of such graph
neural networks and highlight possible usage scenarios. Secondly, DeepSUMO, the cre-
ated framework, will be discussed.
Since this thesis focuses on using SUMO as the main traffic simulator, this discussion
will also mostly be based on SUMO as it is the used traffic simulator. However, most
aspects are valid for other simulators as well. section 8 will then give some ideas for
future research based on the findings of this discussion.
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7.1 General approach

7.1 General approach

The possibility of using traffic simulators has already been briefly discussed in a survey
for traffic predictions using graph neural networks by Jiang et al. [JL22], finding them
useful for certain scenarios like unseen topology and accidents. Data obtained from a
traffic simulator has also already been used to great effect in a thesis by Fukuda et al.
[FUFY20] who used the MATES simulator to generate training and testing data for
creating and evaluating a graph convolutional recurrent neural network for short-term
traffic prediction under incident scenarios.
But a traffic simulation (in combination with graph neural networks) can also be used
for other use cases not related to the direct training/validation process of the model
itself. It can also be used for evaluating and testing applications based on traffic predic-
tion using deep learning methods. One possibility for this would be when developing a
navigation system that makes its route choices depending on the predictions of a graph
neural network.
For this use case conducting large real-life tests can be expensive and hard to orga-
nize. Therefore using a traffic simulator like SUMO using a very long and large-scale
simulation for testing purposes can be a good alternative to real-life tests to find out
information such as (one) how often do I need to retrain my model to achieve the best
accuracy? and (two) what happens when 80% of all vehicles use the software and how
does it affect the predictions and route choices? and much more.
Back to the training and testing of graph neural networks, traffic simulators can also
provide significant value by being able to simulate situations not available in the avail-
able datasets. One of these examples is (as already used by [FUFY20]) accidents, which
are hard to get data from in real-life, but relatively easy to simulate using a traffic simu-
lator like SUMO. Traffic simulators can also be used to test models in specific edge cases
not included in the available datasets as finding real-world data of them is difficult.
Another primary use case of simulations in relation to graph neural networks is that
they can be used (as mentioned in [JL22]) for evaluating models on road topology not
included in the currently available datasets. For example, the publicly available datasets
do not contain much data from European countries. But, since the road topology be-
tween Europe and other continents like America (and even in between cities) can be
vastly different [Boe19, BGR+06], a traffic simulator can be very useful by allowing to
evaluate models on road topology not represented by the available datasets, by being
able to theoretically simulate an infinite number of scenarios.
Using SUMO specifically as the base traffic simulator also has some big advantages with
SUMO being entirely open-source and under active development. SUMO also has a
large community and is already widely used in academic research [ALBB+18]. SUMO
was also specifically developed for conducting large-scale simulations, which benefits the
use case of using it for training/evaluating graph neural networks on a large scale.

The biggest problem however with using a traffic simulator for testing/training neu-
ral networks is the scenario generation. Creating realistic scenarios can be (depending
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on the size) very complicated and time-consuming. While SUMO allows the user to
convert OpenStreetMap Data to network files understood by SUMO, the generated files
often do not correctly represent reality. Especially on big junctions and roundabouts
the OpenStreetMap data is most of the time not entirely correct. This leads to a lot
of adjustment of lanes, traffic light placements, and -programs being needed in order to
use the scenario properly [MHWS21].
Another challenge when creating a new scenario is demand modeling. Although SUMO
offers various tools to help with this (like ActivityGen [CECH22], random traffic, and
detector data) creating realistic demand can still provide a challenge. The best results
are possible when using real-life information using data from detectors or O/D Matrices,
which might be difficult to find in some cases. However, a study by Ma et al. [MHWS21]
which evaluates the accuracy of ActivityGen found that in most cases it is relatively ac-
curate with having a tendency of over smoothing traffic.
Also, the driver behavior modeled in a traffic simulation might be pretty accurate,
but won’t exactly represent a driver’s behavior in real life. Most simulations use car
following- (who does the current vehicle interact with the vehicle in front of it?), lane
changing- (how does a lane change impact the adjacent lanes), and gap acceptance (what
are the conditions before a lane change?) models and more to try to mimic the behavior
of a real-life driver [AMAE22], which is a good abstraction, but not an exact replica of
real driving behavior. This can have an impact on the simulation’s accuracy.
Overall it is very hard for a simulation to capture the full complexity of traffic in the
real world including the human factor. Therefore simulations will only provide a good
representation and not an exact copy of the real world.
This (similar to Figure 20) might lead to over-/underfitting resulting in the model not
performing well using real-world data. The nature of the models used to generate the
traffic of the simulation might also bias the neural network when using only simulated
data for training.
Depending on the simulation size, creating the scenario as well as running the simulation
can take a long time as well as traffic simulation (in SUMO) is a single-threaded task
[Erd18]. Also using a simulator adds an extra step to the workflow and requires addi-
tional knowledge on how to properly configure and use the simulator and integration
framework.

7.2 DeepSUMO

Looking at DeepSUMO the goal was to develop a framework for connecting a traffic sim-
ulator in the form of SUMO with graph neural networks by extracting and processing
data for use with graph neural networks. The created prototype fulfills all mentioned
requirements in section 4 in an acceptable way. The prototype is able to run a traffic
simulation using SUMO, extract all necessary data, and store and present it in a format
specifically designed for graph neural networks. It was also modeled independently from
any framework used to implement graph neural networks using NumPy. This results in
the framework being usable with every currently available framework for deep learning.
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7.2 DeepSUMO

It contains a good implementation for the creation of the detector graph using various
strategies and allows the user to create their own strategy using the strategy pattern.
After creation, DeepSUMO saves the graph data in a lot of different ways making it
very easy to implement and collect the needed data.

Using the observer pattern, DeepSUMO also enables the user to interact with the sim-
ulation and collected data in a configurable and periodic way.
One drawback to this is that the module system is intended to only allow access to the
data periodically (e.g. every 60 steps) and not randomly(= whenever the user wants).
This is intentional and chosen because of two reasons: (one) It is easier to implement the
observer pattern by calling the update functions periodically (two) Running modules at
every simulation step can be very performance heavy, depending on the complexity of
the module. Because of this, the decision was made to force the user to set a frequency
for the modules, in contrast to running all modules at every step, in order to force the
user to think about how often the module really has to run and adjust the frequency
accordingly. This limitation can be theoretically overcome by setting the frequency to
1 or 0, but is strongly discouraged.
But all in all this method of modeling user interaction is a good way of enabling the
user to interact with the simulation and collected data at the same time.

The data collection itself is modeled similarly to a module and collects data periodically
at every end of an interval while the simulation is running. It does this by requesting
the data from TraCi and storing it in arrays optimized for use with neural networks.
This system works well and is overall a good way to capture and process the data as
soon as it becomes available. DeepSUMO also offers a denoising option to smooth out
the collected data. Due to time constraints, however, DeepSUMO currently only de-
noises the data using a moving average, which is a very basic algorithm. It would be a
nice addition to add more denoising/smoothing algorithms in the future to improve the
quality of the input data.
The data is also adjusted to not represent the average speed of all passed vehicles, but
rather the maximum possible average speed if a vehicle would want to pass the detector
(for more information refer to subsubsection 5.4.2). This is a better representation since
it makes the data more robust against outliers and more representative.
A debatable decision in this section is the correction of the occupancy value. The oc-
cupancy values are divided by the number of vehicles that passed the detector. This is
done because SUMO collects these values cumulatively, which means that if two vehicles
are standing on the detector simultaneously values above 100% are possible. [SUM22a]
This correction was chosen after conducting various tests, resulting in the corrected value
overall seeming to be more representative, especially in areas with more dense traffic.
This adjustment however has a negative effect on areas on areas/scenarios with little
traffic. Therefore this adjustment is highly dependent on the scenario and the detector
locations. Working on making this adjustment optional (maybe even on a per-detector
level) would be another good addition to the framework in the future.
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Another current problem with this function is a current bug in SUMO that affects Deep-
SUMO’s functionality drastically. In the current version of SUMO (1.18.0), the data
of a detector for each individual interval is different, depending on whether the data
was exported to an XML-File by SUMO or captured using TraCi. As both come from
the same data source this data should be identical. This results in the data captured
by SUMO potentially being incorrect. This issue/bug has been reported to the SUMO
developers and a fix is (as of August 7th, 2024) expected to be implemented in SUMO
version 1.20, which is scheduled to release on February 20th, 2024 [BEV23].

Detectors can be automatically generated using DeepSUMO’s writer tool. This tool
works well and creates the detectors on the network as configured. One downside of this
tool however was already described in subsection 6.2 with the tool generating detectors
in areas without much traffic. This can result in a lot of the data being uninteresting
due to the maximum possible speed always being the same. In my testing, this also
has an effect on the model’s training performance by introducing underfitting and may
affect the model’s transferability to real-life. This can be partially resolved by for ex-
ample filtering out all detectors with a low variance over the course of the simulation,
but DeepSUMO currently does not include any code to perform this operation due to
time constraints.

During the testing in section 6 the framework performed well and successfully collected
and processed all data correctly. Due to time constraints, however, the scenario chosen
for this is "only" imported from OpenStreetMap and was not adjusted which leads to
the lane topology and traffic lights on most (especially big) junctions being incorrect.
To minimize this issue the scenario area was specifically chosen to include very few big
junctions while still providing a good representation of an urban area with various dif-
ferent types of roads. Also, the traffic in this scenario was generated using random trips
and controlled and adjusted using the flowControlModule. Despite the flowControlMod-
ule including some randomness, it still has the tendency to introduce repetitive traffic
patterns due to the flowControlModules rules only lasting for one week. The decision to
not use tools like ActivityGen was made due to time constraints, since creating proper
scenarios can take a long time. There are also prebuild scenarios available, but they do
not have sufficient length to generate enough data to train a full graph neural network.
All of this results in the used scenario being more of an abstraction rather than a rep-
resentation of real-life traffic.
But despite these issues, the used model still managed to predict the traffic of the sim-
ulation relatively well showing that data from a traffic simulator can be used to train a
graph neural network. Also, DeepSUMO did its job perfectly by collecting all data and
feeding it to the neural network, which should be the main takeaway of that section.
It would be very interesting, however, to run a similar evaluation again with a better
scenario and a more optimized model in the future.
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8 Future research

This section will provide some questions for future research using DeepSUMO. The
questions of this section are based on the result of section 7 and are divided into two
sections. Firstly areas, where DeepSUMO itself can be improved, will be presented.
Secondly, some research questions that can be achieved using DeepSUMO will be given.

8.1 DeepSUMO

DeepSUMO is the framework presented in the thesis to connect SUMO with graph
neural networks. it works well but still has a lot of potential for future extensions.

Add more data denoising options DeepSUMO currently only offers a moving average
for data denoising. Since this algorithm is very basic, a good addition would
be to add more denoising options and a system to dynamically set the denoising
algorithm. This can result in further improvement of the input data and prediction
performance of the neural network.

Add more/dedicated support for design pipeline for neural networks As mentioned
by Wang et al. [WJJ+21] "There are no open-source libraries for unifying the entire
pipeline consisting of data preparation, model design and implementation, and
performance evaluation". In combination with adding more visualization tools, it
would be great to extend DeepSUMO’s functionality to support the entire pipeline
in an intuitive way since DeepSUMO currently only focuses on the data preparation
and partially on the model implementation part.

Improve writer tool As described in section 7, the writer tool currently only has very
limited functionality and little customizability. It also creates detectors in unin-
teresting locations. It would be a good addition to further develop this tool to
place detectors more intelligently to avoid the creation of unnecessary detectors.
Another possibility is to properly implement the filtering function, used to filter
out uninteresting detectors, into DeepSUMO. The tool is also currently specialized
to work with road networks obtained from OpenStreetMap. Another meaningful
addition would be to extend its functionality beyond OpenStreetMap data.

Make adjustments optional As described in subsubsection 5.4.2 DeepSUMO adjusts
the collected values from SUMO. As discussed in section 7 these adjustments have
a big effect on the data stored by DeepSUMO. To make these adjustments more
configurable by the user it would be a good addition to make these adjustments
optional (maybe even on a per-detector level).
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8.2 Application

As DeepSUMO is able to extract data from the simulation and store/provide access to
it that makes it easy to integrate it with neural networks it opens up a lot of interesting
research questions relating to the linking of traffic simulators and neural networks for
traffic forecasting as described in section 7.

Test and compare DeepSUMO further/better The test conducted in subsection 6.3
was basic, using a simple scenario and basic traffic demand. It would be interesting
to test DeepSUMO again using a more complex scenario with a better topology
and more realistic demand. The results of this test can then also be used to
interpret the transferability of neural networks trained for traffic prediction using
a traffic simulator to real life and vice versa.

Create a benchmark/standard for testing of graph neural networks Similar to some
real-life datasets serving as a "benchmark" for testing and most importantly com-
parability between graph neural networks it would be interesting to develop a set
of high quality, long-lasting scenarios covering a vast amount of different types of
road topology to serve as a very diverse benchmark for comparing the performance
of graph neural networks for traffic forecasting.

Test applications based on graph neural networks and traffic forecasting Another ap-
plication of DeepSUMO already mentioned in section 7 is using DeepSUMO to test
applications that work using graph neural networks for traffic predictions. Deep-
SUMO can also provide a platform to test such applications by interfacing with
the simulation and data using the module system. An example of this would be
a navigation system, which makes routing decisions based on the predictions of
such a model. DeepSUMO could provide a platform to test various aspects of the
application like how often the model has to be retrained, what happens when 70%
of all drivers use the navigation tool, and more.
Of course, this was only an example, since there are many more applications and
ideas that can be tested and evaluated using DeepSUMO.
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9 Conclusion

During this thesis, a framework for training/testing graph neural networks using data
from a traffic simulator (in this case SUMO) was developed. The framework contains
various functions related to this task. It was modeled after the use cases in section 4
and fulfills most of them.
It can initialize the simulation and create a graph structure from configured detectors.
It can also continuously collect data from the simulation while the simulation is still
running. The user can use the data from the framework using observers, which are
called periodically, or after the simulation has finished. The data is also saved in various
formats optimized for use/integration with graph neural networks for traffic prediction.
The functionality of the framework was then examined by coding an example and testing
the training, validation, and testing process of a neural network using data extracted
from SUMO using DeepSUMO. This experiment went well and proved that it is possible
to extract data from the simulation and train/test a graph neural network.
It can therefore be said, that the objective of developing a framework to connect a traffic
simulator with graph neural networks was achieved successfully
The general aspect of using simulated traffic data for the training of graph neural net-
works was also discussed. The discussion came to the conclusion that simulated data can
be very useful for training and especially evaluating graph neural networks on new road
topology and on scenarios not present in the available real-life datasets (like accidents).
It was also discovered, however, that the quality of the trained model and simulation,
in general, is highly dependent on the input topology and traffic demand for the simula-
tion. This can provide a significant challenge, as creating high-quality scenarios can be
time-consuming to create, and using traffic simulators might be challenging to integrate
into some workflows as using simulators requires additional knowledge of the simulation
tool used.
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