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Abstract
Renewable energy production is one of the strongest rising markets and further extreme growth can be anticipated due to
desire of increased sustainability in many parts of the world. With the rising adoption of renewable power production, such
facilities are increasingly attractive targets for cyber attacks. At the same time higher requirements on a reliable production
are raised. In this paper we propose a concept that improves monitoring of renewable power plants by detecting anomalous
behavior. The system does not only detect an anomaly, it also provides reasoning for the anomaly based on a specific
mathematical model of the expected behavior by giving detailed information about various influential factors causing the
alert. The set of influential factors can be configured into the system before learning normal behaviour. The concept is based
on multidimensional analysis and has been implemented and successfully evaluated on actual data from different providers of
wind power plants.

Keywords
Anomaly detection, Attack detection, Resiliency, Multidimensional analysis, Wind power plant, Normality model, Explainable
anomaly detection

1. Introduction and Motivation
For reasons of sustainability the amount of regenerative
power production is continuously increasing worldwide
at ever higher rates. With higher shares of the overall
power production, the importance of a reliable power
supply from renewable sources becomes more and more
important. On the other hand, due to their dependence on
actual weather conditions, it is more difficult to achieve
a reliable supply from natural sources as a matter of prin-
ciple. Thus, an even closer monitoring of the production
process by the operators is important to account for that.

Apart from operational challenges, the rising impact
of renewable sources in power production also makes
them an attractive target for attackers to achieve evil
purposes. As already shown by the attack on Ukrainian
power plants in December 2015 by Russian hacker groups,
critical infrastructure becomes an ever more important
attack target, not only in the recent war crisis in Ukraine
([1]). Thus, it is also important to employ advanced and
powerful attack detection systems for renewable power
production systems in order to protect this part of the
critical infrastructure.

In this paper a novel detection system will be proposed
that is capable of detecting anomalies in the operation
of renewable power plants. The system operates reason-
agnostic in its ability to detect anomalous operation, be
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it operational or based on attacks. Since monitoring and
decisions on potential actions to be taken are ultimately
performed by highly skilled humans, it is important to
use their time as economically as possible. By integrating
outage and attack detection in a single system, this goal
is supported.

In addition, typically there is a tradeoff between false
positives and false negatives to be balanced in anomaly
detection. The more alerts are generated, the smaller
the number of false negatives. On the other hand, more
alerts often means more false positives, exhausting the
human resources to deal with the generated alerts. Thus,
in order to take informed decisions and apply appropriate
measures, the human monitoring staff needs to be able
to assess messages from the anomaly detection engine.
So it is important that reasons for alerts are provided to
the humans in order to detect false positives as easy as
possible. The proposed system will provide such reasons
to the operators by showing detailed, mathematically
based explanations for generating alerts.

The remainder of this paper starts with a review of
related publications in section 2 which will show that
while there are already advanced solutions to specific
aspects, none of these systems provides the combination
of features as our system. The concept of the proposed
system will then be explained in section 3 and specific
configuration for wind power plants will be presented.
This is followed by a practical evaluation of the concept
on actual wind power plant data from different German
wind power plants from years 2019 to 2021 in section 4.
Finally, results will be summarized and ideas for extend-
ing the system itself as well as its application scope will
be presented in section 5.
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2. Related Work
Several papers in the context of anomaly detection for
renewable energy systems can be found in the literature.
In a more generalized context, [2] describes a learning
approach similar to the one in this paper even for any
type of IoT system. Whereas this approach could also be
applied to renewable power plants, it is not clear which
part of the learning can be carried out in an automated
fashion. Similarly, results do not provide explanations
for anomalies. A focus on attacks, more specifically intru-
sion detection, is described in [3]. However, the approach
is not extensible to outage detection and only provides
non-explainable alert messages. More specifically for
power plants, [4] uses many very general input param-
eters. However, this approach also does not provide ex-
plainable anomalies as results.

Other interesting wind power specific concepts include
[5, 6]. However, these approaches also do not provide
explainable results. The first, in addition, requires a semi-
supervised learning approach which is not feasible for
previously unknown attack types. Also, annotated train-
ing data is often times not available. The second approach
focuses on system failure detection rather than attacks.

On the other hand, [7] focuses on attacks and is specific
for wind power plants. It is not extensible to other types
of energy sources and the degree of explainability of the
results is not obvious. Papers [8, 9] also only focus on
specific attacks for wind power plants and thus do not
achieve the general detection capabilities of our concept.
The latter is concerned with false data injection attacks
which are also the focus of several other publications.
Moreover, [10] provides a good overview of the security
challenges from attacks that have to be considered, but
it does not present a comprehensive solution.

Finally, there are also papers with a pretty similar con-
cept to ours, but with different detection approaches, such
as Markov chains in [11] and a more complex detection
model in [12]. However in both cases, while the approach
is specific to wind power plants and an extensibility is not
documented, the explainability of the generated alerts is
uncertain. This is also true for [13] which also uses a cor-
relation based approach, yet it is only one-dimensional
and requires and includes many specific sensors, so that
it is also tied to the domain of wind turbines only. Even
more specific to wind turbine gearboxes is [14]. The au-
thors do not limit their approach to attacks, also use a
multidimensional analysis and generate at least partially
explainable alerts. However, it is not obvious whether
and how this can be extended beyond gearboxes.

In summary, none of the discussed references is able
to provide the comprehensive features of our approach
(cover attacks and outages, generate explainable alerts,
capable of detecting unknown attacks and useable for
different types of power generation).

3. Concept

3.1. Requirements and Context
Based on the research project SecDER1 which aims to
increase the resilience of renewable virtual and physical
power plants, the requirements for an anomaly detection
system have been identified as follows:
Reason agnostic Both anomalies originating from

known and unknown attacks as well as non-attack based
anomalies shall be detected, ideally based on a single
detection system.
Explainable alerts The identified anomalies should

be used to raise alerts that can be handled by human
domain experts. In order to simplify and substantiate
the decisions by the experts explainable alerts should be
provided, detailing the reason and context why the alert
has been issued.

Adaptability The concept shall be usable for different
types of wind power plants as well as different types of
renewable power plants in general. The learned normal-
ity models can be specific for each plant, however, the
concept to learn the model should be generic.

General normality model While a single set of nor-
mality models for all plants is not a goal, it is preferable,
if normality models can be learned for groups of similar
plants. This way the model becomes more stable, and the
number of extensive learning processes can be reduced.
Continuous learning and adjustment The system

should be capable of adjusting the learned system be-
haviour continuously, thus improving the quality of the
normality models over time. Thus can also update the
models in cases of concept drift over time.

The system described in the following part of the paper
will satisfy all of these requirements. On the other hand,
there are also limitations of the approach that have been
accepted in order to keep the complexity manageable. In
particular, detection is only considered up to explainable
alert generation, alert handling itself is not in scope. Han-
dling can be considered orthogonal as long as explainabil-
ity of the generated alerts is secured. For alert handling,
generic procedures and manual update concepts can be
considered as an extension, see e. g. [15] for an approach
based on rule-based anomaly detection. Similarly, we
only consider anomaly-based detection concepts, since
most attack patterns (and even some of the non-attack-
based outage patterns) are previously unknown, so rule-
or pattern-based detection will not be powerful enough
to detect these. As attacks on virtual power plants are
executed by designated experts, advanced attacks will
be used which are unique to the specific target and thus
typically not previously known.

1https://secder-project.de

https://secder-project.de


3.2. Multidimensional Normality Models
(MNM)

The basic concept for anomaly detection is learning mul-
tidimensional normality models (MNM) based on his-
toric data of the power plant (or a set of similar power
plants) and then assessing the deviation from this MNM
for current readings of a logical record of the plant. The
concept called cellwise estimator (CE) of the MNM has
already been described in [16] in detail; thus, we will
only present a high level description here. Originating
from online analytical processing (OLAP) cubes, the idea
is to describe normal behaviour of certain metrics (such
as power production in a windmill) based on several or-
thogonal dimensions (such as weather conditions, plant
sensor readings and others). The reason for this multidi-
mensional treatment is that measurements of the metrics
may be within a permissible range when looking at them
globally, whereas they may be an anomaly, when consid-
ering the specific context in more detail. The context is
described by the dimensions which are used in learning
the MNMs. Conversely, potentially abnormal measure-
ments on the global level may actually be normal when
looking at their specific context. Thus, it is important
to be able to base a decision whether a logical record
constitutes an anomaly on both global as well as contex-
tual, i. e. dimensional, information. To account for these
challenges a specific normality model is learned for each
of the cube cells, i. e. every contextual situation.

Unfortunately, the higher the number of dimensions
and the number of values within a dimension, the larger
the number of combinations to consider becomes. Since
the growth is exponential, these numbers have to be
limited. In addition the concept of iceberg cubes ([17])
known from the OLAP domain can also be used to restrict
the number of cubes to consider to relevant ones.

In order to deal with continuous data streams as needed
for monitoring a power plant, the cubes are computed
per timeslice with a configurable timeslice length. The
metric attribute whose normal behavior is to be learned
is aggregated by some configurable aggregation function
over all readings within a timeslice. For the domain of
wind power plants for instance, the power production
output of a mill is a logical choice as a metric with multi-
ple readings being aggregated by using the average over
a timeslice. Typical dimensions for this metric can be
wind speed, wind direction, rotor position and outside
temperature. Since the dimensions are used to form an
OLAP-like cube, all dimensions must be of discrete types.
Thus, continuous readings such as wind speed and tem-
perature need to be assigned to a set of classes in order
to be used as dimensions. As known from OLAP rollups,
there is also a symbolic value of * in each dimension
that aggregates all classes in that dimension and thus
provides a cube cell where the class is irrelevant.

The goal of the learning process by looking at histor-
ical data is to compute a statistical description of the
metric attribute for each cell of the cube. This is done by
assuming a normal distribution for the metric readings
in each cell and approximating that normal distribution
by estimating mean and standard deviation for the met-
ric attribute based on learning from historical data. For
current readings the anomaly score is computed as dif-
ference to the mean of each relevant cell as number of
standard deviations. The higher this factor, the more
likely the current reading is an outlier. As known from
statistics a factor of 3 is a natural choice as a threshold
to generate an alert. As will be seen in section 4, solely
looking at this factor as an anomaly measure is not suf-
ficient, though, to properly assess the importance of an
alert.

In summary, each cell’s normality model in our con-
cept consists of an estimation of normal distributions
(with mean and standard deviation each) of one or more
measurements per cube cell over a timeslice. Cube cells
are defined by combinations of discrete values of relevant
dimensions, with wildcards allowed for cells with irrele-
vant values in a dimension. The anomaly score is then
computed based on the number of standard deviations
that any current reading of a measure deviates from the
expected mean. Alerts are typically only raised for cube
cells with anomaly scores higher than a threshold of 3.
In addition to the anomaly score the computed normality
model as distribution estimation is also provided with the
alert along with information about the cell’s dimensional
values that caused the alert. This combination of infor-
mation (metric measurement, anomaly score, contextual
values, normality model) comprises the explanation for
the human expert. Thus, an informed decision about
proper reaction to the alert is facilitated.

3.3. Application of MNM to Wind Power
Plants

In order to apply our concept as explained in section 3.2
to renewable energy plants in general and wind power
plants in particular, we have to define the metrics with
aggregation functions for which normality models shall
be learned as well as the discrete influential dimensions
that might influence the metrics and be important for
assessing an alert. Candidates for choosing the metrics
are any elements of a monitoring reading that can be
used to describe the operational behaviour of a wind-
mill. The assumption is that attacks or outages will lead
to unexpected behavior in this metric. Primarily, this
is the effective electrical power production of the mill
computed as an average over a timeslice. For consistency
checks the number of measurement readings per times-
lice can also be used as a metric. Alternative options that
have not been evaluated in the experiments described in



section 4 could be the positions of the pod or the blades
of the windmill or other operational features.

There are much more options for choosing the dimen-
sions than the metrics. In the evaluation in section 4
we have experimented with different choices, but there
are actually many more. Obvious dimensions include
wind speed, wind direction, pod position, air tempera-
ture, air pressure. More possible options include power
factor, pitch angles of each blade, angle between pod and
wind direction and anemometer readings. The choice
of discretization of each of these factors (cf. 3.2) can be
considered another hyperparameter of the application.
Specific choices for the dimensions and discretizations
for the experiments will be explained in section 4, but it
has to be pointed out that those are only initial selections
and much more experiments will have to be carried out
in the future to optimize the approach, cf. section 5.2.

4. Evaluation
In order to evaluate the capabilities of the concept in
detail, we used historical data from actual wind power
plants that are operated by project partners in the SecDER
project. We had two different datasets, one from each
operator. Data did not contain any known attacks, yet
some anomalies due to maintenance or unusual weather
conditions.

The first dataset consists of operational log data from
a single wind mill over the time range from January 2020
to August 2021 at a sampling rate of 15 minutes. Each log
reading consists of 22 attributes in total, one of which is
the timestamp and the others can be used as metrics or
dimensions as will be explained in section 4.1.

The second dataset provides operational log data from
9 different wind parks, comprising 42 windmills in total at
a sampling rate of 5 minutes. Data provides 30 attributes
per reading and readings were available for the year 2020.

In both cases, a first part of the data has been used for
training and the remainder for testing. In the sequel, re-
sults will be presented based on output from a specifically
developed GUI tool. In the figures the testing period will
be used horizontally to display the results for individual
test instances. Each timeslice’s reading can be considered
a test case. The graph shows the results for a specific
cell of our cube, as selected from different dimensions,
values and combinations at the top. Within a figure the
red curve shows the computed metric value (scale on
left) whereas the blue curve shows the anomaly score
(i. e. the number of standard deviations that the value is
from the mean in this particular cell), scale on the right.
Typically, scores above 3 can be considered anomalous.
In addition, a yellow line displays the learned mean value
for the metric for this cell and green and lightblue lines
show mean +/- 3 standard deviations.

Figure 1: Effective Power and Anomaly Scores for Single Mill
(Total view)

4.1. Validation of Concept
As an initial validation we used the data from 2020 of
the first dataset as training set and the readings from
2021 for testing. We chose the average electrical power
production over timeslices of 4 hours as primary metric.
We experimented with some attributes as dimensions,
the results in this subsection have been achieved with
wind speed, wind direction and difference between gon-
dola angle and wind direction. The continuous values
in these dimensions have been linearly assigned to 9, 12
and 5 classes, respectively. The number of classes of the
first two features has been determined heuristically by
assigning equally sized intervals of the total range of
values to classes. For the third feature where original
data had a strongly non-linear distribution we decided
to use fewer classes to primarily account for major and
medium outliers in each of the two directions and have
most data in the no difference class.

Figure 1 shows the test results for the global cell, i. e. no
fixed value in any of the dimensions. As we can see, there
are only few significant anomaly scores, primarily those
on January 20th, March 11th and March 29th. At this
general level (no fixed dimensional values), this behavior
can be expected as the threshold for raising an alert is
around 1900 kW which is already pretty close to the 2400
kW nominal power of the mill. However, the first two of
those scores will not be reported by an alert as all subcells
into the wind speed direction do not have an anomalous
score. This means that the power production seemed
unusually high from a global point of view (which is
information that could have been observed without our
approach but would have raised a false positive), yet in
reality it is simply explainable by the rather high wind
speed on those days. For the remaining high anomaly
score the dimensional analysis shows reduced anomaly
scores the further detailed the cells become, yet it remains
above 3, thus raising an alert. Looking at the data in



Figure 2: Effective Power and Anomaly Scores (Single mill,
Two dimensions restricted view)

detail in the evaluation, this score can be considered a
false positive. The reason is that this specific context
situation had not been observed in the whole training
period. Such errors can be remedied by increasing the
training data set.

Even more interesting is the analysis looking into some
of the dimensions, as the learned normality behavior is
much more specific in those cases as seen in figure 2. In
that figure we have focused the display on the wind speed
class 2 (pretty low speed) and the wind direction class
2. The figure shows that the learned model with mean
around 140 kW and 80 kW standard deviation is very
specific. Still, the only remaining alert with an anomaly
score of 3.1 shows up at April 11th. This could be a false
positive due to a too specific cell model or a true alert
due to a malfunction with too high generated power. A
human operator seeing the alert would be able to classify
this alert based on his domain knowledge. Due to space
constraints we only present these exemplary results here.

4.2. Common Model for Plant Groups
For the second validation data from the set of windparks
has been used. Here, January to August 2020 has been
used as training data and September to December 2020
for testing. Metrics and dimensions shown are identical
to the ones in the previous subsection for comparability
purposes. In addition, the specific wind mill has also
been used as another dimension in order to be able to
analyze the outcome per mill and over all mills together.
Data from 17 of the mills with identical nominal power
production of 2300 kW have been used.

Figure 3 again shows the overall view of the scores
with no fixed dimensional values. We can see that the
learned normality model is much more specific than the
one in figure 1 due to the extended training set (standard
deviation around 200 kW as opposed to 500 kW).

Two cases with higher anomaly scores can be identi-
fied, namely Nov 2nd and Nov 19th/20th. The first of
those shows a similar behavior as already noted in the
previous subsection, i. e. an anomaly score that does not
show up in any of the dimensionally restricted models
and thus, it would not be reported as alert. The latter
anomaly score would be tied to two of the four wind-

Figure 3: Effective Power and Anomaly Score (Plant Group,
total view)

Figure 4: Effective Power and Anomaly Scores (Plant group,
dimensionally restricted view, speed class 6, direction class 8)

parks as well as specifc wind speed and wind direction
all showing anomalouss scores in one alert as those are
all dependent cells in the cube. This shows that the score
is indeed an anomaly for these mills (cf. figure 4) and
should thus be reported as an anomaly alert. This can
be considered a true positive that is recognized by the
system. It can be further explained to the human expert
by providing the specific wind park, speed and direction
that causes the alert to be raised.

In general, the increased size of the training data leads
to more precisely learned models in the cells. This po-
tentially increases the number of false positives, since
anomaly scores are more likely with smaller standard
deviation. However, by judging an anomaly score in com-
bination with the standard deviation of its cell, most of
the false positives can be identified easily and thus do not
lead to raising alerts. On the other hand the benefit of
the more precise models is that false negatives are much
less likely in that case.

Also, only precise cell models facilitate discovery of
anomalies in cases with unusual low power production
particularly relevant in case of attacks. This is due to the
fact that low production is only observed as an anomaly
if the learned mean - 3 standard deviations is above 0 kW.
This can only be achieved with rather precise cell models
which need large training datasets.

4.3. Evaluation against Known Outages
The evaluations in the previous subsections were only
able to show that anomalous behavior can be detected
in principle, since the data did not contain any known
attacks or outages of the power plants. In order to get a
qualitative impression of how well the detected anoma-



lies correspond with actual unusual behavior, we evalu-
ated the concept against data from a single windmill that
was available over a 2.5 years time frame. In addition,
for this plant information from the plant management
system (PMS) was available that listed all known and
recorded system problems during that time.

It should be noted that this evaluation is not well suited
for a thorough quantitative analysis of the algorithm
since the dataset only provides information about events
affecting the operation of the mill that were known to
the PMS. Thus, since no attacks are known there are
no attack labels and thus no evaluation against attack
detection is possible. Similarly, anomalous situations
due to an unusual behavior of the mill unknown to the
PMS are not labeled as anomalous in the ground truth.
Thus we can expect some (seemingly) false positives for
the anomalous situations not recorded in the PMS and
thus labeled as normal. This will lead to a rather low
precision when comparing our anomaly messages with
the events recorded in the plant management system as
ground truth.

In addition, the events in the PMS record any unusual
situation in the windmill regardless of their impact on
the actual power production. Since we consider output
power production as our analysis target, it is obvious
that we will not be able to detect events that have no or
minimal influence on the power production2. Such situa-
tions will be recorded as seemingly false negatives in the
comparison, impacting the recall negatively. However,
we do not anticipate too many of such messages so that
aiming for a high recall is still a desirable target.

Both effects mentioned previously will also impact
other measures such as accuracy (to some degree) and
F1 score (to large degree). Still a good, albeit not perfect,
accuracy score is also a valid goal to target.

4.3.1. Evaluation Setup

For this evaluation we used windmill data from 2 years
as training set for our algorithm and data from the re-
maining 0.5 years as a test set. We used an algorithm
configuration similar to the one in section 4.1. We had to
clean training data by removing the readings for times
which had been recorded in the PMS as anomalous in
order to only learn normal behavior of the system.

Since the events recorded in the PMS used timestamps
with 5 minute difference, we first need to align the time
resolution, i. e. define how many anomalous events within
a 4 hour timeslice make such a timeslice anomalous in
total. While it is desirable on one hand to even realize
anomalies that only occur at a single instance in time,

2From a practical point of view detecting such events with our algo-
rithm is not necessary, as these have only minimal impact on the
power production and are already known from the PMS and thus
do not require advanced detection.

PMS issue
false 948 103
true 15 38

CE anomaly alert false true

Table 1
Confusion matrix for outage anomaly detection (at least 40
minute outage per timeslice considered anomalous)

on the other hand it is questionable whether a full times-
lice shall be considered anomalous just based on a single
event. For the following evaluation we used thresholds of
40 and 5 minutes within a 4 hour timeslice as a condition
for an anomalous timeslice. Note that an anomaly due to
an outage is usually rarely a very short incident.

Another aspect is the management of missing read-
ings from the windmill which is often times caused by
anomalous operation. If no data readings are present for
a whole timeslice the CE algorithm will not detect an
anomaly for the power production, since missing data
does not get any anomaly score. However, with the sec-
ond metric (number of readings per timeslice) we can
easily detect timeslices where no power readings are
present and thus report them as an anomaly as well. Fi-
nally, a single anomalous cube cell per timeslice will
make the entire timeslice anomalous. This is one of the
primary strengths of the algorithm to also detect only
specific anomalies within a large set of non-anomalously
seeming other cells at the same time. The explaination
of the anomaly for a timeslice will contain all anomalous
cube cells for that timeslice together with the additional
data, so that the human expert can further examine the
incident.

4.3.2. Exemplary results

With the setup as described before and 40 minute anomaly
threshold we achieved a recall of 0.72 and an accuracy
of 0.89 as the primary targets of the algorithm. The pre-
cision was low at 0.27 as expected and explained above;
this makes an F1 score of 0.39. The matrix in table 1
summarizes the results.

Again, the seemingly high number of false positives
is due to the fact that the CE detects anomalies that are
not part of the PMS failure ground truth, either because
they are attacks or because they did not lead to events
in the PMS. As another baseline an auto-encoder based
algorithm trying to detect only outages on the same data
set only achieved a 0.31 F1 score, mainly because of a
higher number of false negatives.

If we reduce the threshold how many anomalous events
in the groud truth make a timeslice anomalous to a sin-
gle event (i. e. 5 minutes of the 4 hour timeslice), the
recall reduces somewhat to 0.60, however accuracy and
precision remain pretty much the same such that the F1



PMS issue
false 938 103
true 25 38

CE anomaly alert false true

Table 2
Confusion matrix for outage anomaly detection (at least 5
minute outage per timeslice considered anomalous)

PMS issue
false 1004 47
true 17 36

CE anomaly alert false true

Table 3
Confusion matrix for outage anomaly detection with higher
anomaly threshold

score reduces to 0.37 (cf. table 2). This behavior is due
to an increased number of false negatives, which could
be expected as some minor issues in plant operation do
not necessarily cause anomalous power production. The
auto-encoder baseline increased its F1 score to 0.33 in
this case.

A final evaluation shows that there is still potential in
the CE based algorithm by fine tuning the learned cell
models. Increasing the threshold anomaly score for alerts
to 4 standard deviations, we obtain the confusion matrix
in table 3. This increases the accuracy to 0.94 and specifi-
cally the precision to 0.43. The recall is slightly reduced
to 0.68 for an overall F1 score of 0.53. This improvement
is primarily due to the reduced number of seemingly false
positives in situations where no outage is recorded in
the PMS. However, it remains unclear whether this is an
actual improvement in practice or not. It simply leads
to a reduction of detected anomaly candidates. Yet from
the data provided it is unknown where these situations
would actually belong to anomalous or regular behavior.

In summary, the evaluation in this section has shown
that the algorithm introduced in chapter 3 is capable of
detecting unusual system behavior of a wind power plant
which had also been recorded in a PMS, particularly with
good accuracy and recall. Precision and thus F1 score are
somewhat lower which can be attributed to the algorithm
also detecting anomalous behavior that had not been
recorded in the PMS, e. g. because it was due to a specific
wind condition. This is exactly what the main advantage
of the CE algorithm is, namely also detecting anomalous
behavior in specific conditions which could be caused
by an attack. We have also shown optimizing some of
the hyper parameters of the approach (such as message
thresholds and timeslice aggregation) might improve the
detection quality further in addition to larger training
sets and more dimensions.

5. Conclusion and Future Work

5.1. Summary
In this paper we have presented a concept and implemen-
tation to detect anomalous behavior in renewable power
plants. The concept is based on learning normal behav-
ior of key performance figures such as effective power
production. The normal behavior is learned for many
specific situations which can be expressed as multidi-
mensional cells in an OLAP-like data cube. On one hand,
this reduces the number of false negatives by learning
very specific models for the individual cells represent-
ing specific situations. On the other hand, the number
of false positives can still be kept low by using larger
training data sets. Also, assessing the specificity of the
learned model to put a mere anomaly score into context
and thus facilitate appropriate treatment before raising
alerts can be done by a human inspector and to some
degree even an automation such as in section 4.3. This is
an important advantage of the explainability achieved by
the learned behavior models for each cell. The concept
has been successfully evaluated on actual data from wind
power plants as shown in section 4 both in general and
also on a set of known outages as one possible reason for
anomalous behavior.

In summary, the concept presented in this paper offers
a promising approach to detect anomalous behaviour in
renewable power plants by learning specific models ac-
cording to a configurable set of dimensions reflecting rel-
evant circumstances for power production. The anomaly
scores based on learned mathematical models provide
traceable explanations for the detected anomalies which
may originate from attacks or regular operational issues.

5.2. Outlook
While the evaluation presented in section 4 already showed
the usefulness of the concept, much more experiments
are needed to reveal its full potential. Much more anal-
ysis with regard to identifying interesting and relevant
dimensions in the base data to be used for the cube is re-
quired. Some promising dimensions such as temperature,
air pressure and power factor have not been included
yet. Moreover, using larger time ranges for the training
data will be one of the next steps to further verify the
positive impact of more precisely learned models. This
should also further reduce some issues detecting unusual
low power production due to normality models with too
large standard deviations that do not raise high enough
anomaly scores even for zero power production in certain
situations.

Also, some experiments have shown that using a nor-
mal distribution as foundation of estimating cell models
is not always appropriate. We saw several cases where



most metric training data lies around a rather small value
with a few high outliers. For such distributions a normal
distribution is not a good estimator. Instead, alterna-
tive models should be used which will be added to our
implementation soon.

Finally, we have currently only evaluated the concept
on wind power production. We have similar datasets
from photovoltaics which we plan to use for a second
evaluation. Metric will be similarly the effective power
production, but regarding dimensions there will have to
be an extensive evaluation which are most promising.
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