
Extending ”PathoLearn” with an End-
To-End Artificial Intelligence Platform
Jannes Neemann
Master-Thesis in Computer Science

October 12, 2023

Author Jannes Neemann
166172
jannes@neemann.net

First examiner: Prof. Dr. Frauke Sprengel
Abteilung Informatik, Fakultät IV
Hochschule Hannover
frauke.sprengel@hs-hannover.de

Second examiner: Dr. Nadine S. Schaadt
Institut für Pathologie
Medizinische Hochschule Hannover
Schaadt.Nadine@mh-hannover.de

Declaration of authorship

I hereby declare that I have written this thesis independently without any help from oth-
ers and without the use of documents or aids other than those stated. I have mentioned
all used sources and cited them correctly according to established academic citation
rules.

Hannover, October 12, 2023 Signature

Abstract

Pathologists need to identify abnormal changes in tissue. With the developing digital-
ization, the used tissue slides are stored digitally. This enables pathologists to annotate
the region of interest with the support of software tools. PathoLearn is a web-based
learning platform explicitly developed for the teacher-student scenario, where the goal
is that students learn to identify potential abnormal changes. Artificial intelligence (AI)
and machine learning (ML) have become very important in medicine. Many health sec-
tors already utilize AI and ML. This will only increase in the future, also in the field of
pathology. Therefore, it is important to teach students the fundamentals and concepts
of AI and ML early in their studies. Additionally, creating and training AI generally
requires knowledge of programming and technical details. This thesis evaluates how this
boundary can be overcome by comparing existing end-to-end AI platforms and teaching
tools for AI. It was shown that a visual programming editor offers a fitting abstraction
for creating neural networks without programming. This was extended with real-time
collaboration to enable students to work in groups. Additionally, an automatic train-
ing feature was implemented, removing the necessity to know technical details about
training neural networks.

Table of Contents

1 Introduction 1

2 Machine Learning 4
2.1 Overview . 4
2.2 Supervised Learning . 6
2.3 Feedforward Neural Networks . 8

2.3.1 Artificial Neurons . 8
2.3.2 Multilayer Perceptron . 9
2.3.3 Nonlinear Activation Functions 10

2.4 Backpropagation . 12
2.4.1 Overfitting . 15
2.4.2 Batch Normalization . 16

2.5 Datasets . 17
2.5.1 Dataset Splitting . 17
2.5.2 Digital Pathology Challenges . 18
2.5.3 Data Augmentation . 18

2.6 Convolutional Neural Network . 19
2.6.1 Convolutional Layer . 20
2.6.2 Pooling Layers . 23

3 Building Blocks of Neural Networks 24
3.1 Classification . 24
3.2 Object Detection . 28
3.3 Image Segmentation . 30
3.4 Pre-Trained Models . 34

4 The Artificial Intelligence Lifecycle and Software Tools 36
4.1 The Artificial Intelligence Lifecycle . 36
4.2 Choosing a Deep Learning Framework 37

4.2.1 Popularity of Different Deep Learning Frameworks 38
4.2.2 PyTorch vs. TensorFlow . 39

4.3 Comparison of Existing End-To-End Artificial Intelligence Platforms . . . 44
4.3.1 ClearML . 50

V

Table of Contents

4.4 Software Tools for Teaching Artificial Intelligence 53

5 Requirements 56
5.1 Stakeholders and Target Groups . 56
5.2 User Stories . 57
5.3 Functional Requirements . 58
5.4 Non-Functional Requirements . 59

6 Implementation 61
6.1 General Software Architecture . 61
6.2 Centralized Authentication . 62
6.3 Creating Neural Network Architectures 65

6.3.1 Visual Programming Editor . 65
6.3.2 Predefined Neural Network Architectures 68
6.3.3 Collaboration . 71

6.4 Training Neural Network Models . 75
6.4.1 Creating Datasets . 75
6.4.2 Parsing Visual Programming Editor Nodes 78
6.4.3 Training workflow . 81

6.5 Serving Neural Network Models . 84

7 User Test 88
7.1 Execution . 88
7.2 Surveys . 89
7.3 Results . 89

8 Requirements Fulfillment 91

9 Conclusion and Future Work 93

A Appendix 96
A.1 Comparison of Pre-Trained and Not Pre-Trained CNNs 96

A.1.1 Dataset . 96
A.1.2 Model Configuration . 96
A.1.3 Results . 97

A.2 The Project and Experiment Page . 99
A.3 Dataset Metadata . 101
A.4 Dataset Template Code . 102
A.5 The Dataset Page . 103
A.6 Lightning Model for Classification Tasks 104
A.7 PyTorch Pooling Layers with Same Padding 105
A.8 PyTorch Layers for Addition and Concatenation 106
A.9 The Inception Module Realized in PathoLearn 107

VI Jannes Neemann

Table of Contents

A.10 The Residual Block Realized in PathoLearn 108
A.11 Evaluating the Best Neural Network Model Serving Format 109

A.11.1 Training Environment . 109
A.11.2 Datasets . 109
A.11.3 Neural Network Architecture and Training Configuration 110
A.11.4 Metric Gathering . 111
A.11.5 Results . 113

A.12 Examplatory Pre- and Postprocessing script 115
A.13 Surveys . 116

A.13.1 Survey before Using Patholearn 116
A.13.2 Survey after Using Patholearn . 118
A.13.3 Survey Answers before Using PathoLearn 121
A.13.4 Survey Answers after Using PathoLearn 123

A.14 Evaluating the Visual Programming Editor Real-Time Performance . . . 127
A.14.1 Environment . 127
A.14.2 Procedure . 127
A.14.3 Results . 129

October 12, 2023 VII

1. Introduction

Artificial intelligence (AI) and machine learning (ML) are becoming increasingly impor-
tant in medicine. Through the emerging digitalization of medical data and the increasing
performance of hardware, new AI technologies arise. Many fields of the health sector
e.g., diagnostics, patient monitoring, and robotics, already utilize AI, with a tendency
to increase even more in the future [Ado21].

Pathology is a subfield of medicine that is about the study of diseases [Fun18]. Es-
sentially, it examines the structural and functional changes resulting from a disease.
Primary, this happens on a microscopic level, where individual cells or regions of a tis-
sue sample are investigated under a microscope. Pathologists can identify abnormal
tissue changes e.g. which cells are cancerous. In recent years, with the development
of digital microscopes and specialized scanners, called whole slide scanners (WSS), the
work of pathologists can be supported with software tools. A WSS moves a digital
microscope over a tissue sample, takes multiple images, and stitches them together to
form a high-resolution digital representation of the tissue, called a whole slide image
(WSI) [HPS20]. Through specialized software, WSIs can be viewed on a monitor, and
pathologists can annotate them to mark regions of interest. WSIs and corresponding
annotations build the foundation for today’s diagnostics and enable to share the results
with other pathologists.

WSIs also introduce a new way of teaching pathology. Instead of preparing multiple
microscopes with tissue samples for students, software can be used to display WSIs.
Every student can access the same digital tissue sample, and the teacher can more easily
show and explain relevant regions on the slide. This also comes with new possibilities
for student exercises. PathoLearn is an open source teaching platform for pathology
that utilizes the ability to annotate WSIs with different types of annotations (e.g. point,
line, or polygon) [Nee21]. It uses a course system where teachers can create courses
and tasks. Each task uses a WSI, where the student is required to draw the correct
annotations on the WSI to solve it. Different from other available software systems,
PathoLearn generates automatic feedback that supports the student in improving their
solution. The teacher is only required to create a sample solution. Figure 1.1 shows
an extract of the PathoLearn frontend for teachers. Each annotation created by a
teacher has an outer and an inner threshold. The resulting area ring defines where the
annotation drawn by the student would still be considered correct. As students must

1

1. Introduction

also be capable of classifying the annotation, the teacher can define multiple annotation
classes (see Figure 1.1 top right corner) and assign one to each annotation (light and dark
blue colored annotations). Teachers can also add informative annotations or regions of
interest to guide students to the correct area on the WSI.

Figure 1.1.: Extract of the PathoLearn frontend for teachers to create WSI tasks. A
teacher can draw annotations and assign an annotation class (annotation
color) from a list of classes (top right) to them.

Students are offered a different view (see Figure 1.2). They initially only see the infor-
mative annotations and regions of interest. Through the given work order (top of the
image), students have to identify where the requested annotations are located. Figure 1.2
illustrates how the feedback is presented to a student. Each annotation receives feedback
through color highlighting. Depending on the task difficulty chosen by the teacher, more
detailed feedback is displayed. This can be seen with the correct (green) annotation,
where parts of the polygon line are highlighted yellow to indicate that these parts are
outside of the defined threshold. The student can also select an annotation class for each
annotation. If the selected is wrong, the annotation receives a violet highlight. Addi-
tionally, summed-up feedback is given for the entire task, informing the student of the
number of missing annotations and listing how many annotations are correct, wrong, or
have the wrong class. Through these feedback ways, students can incrementally improve
their solutions and learn to identify pathological relevant structures on tissues.

2 Jannes Neemann

Figure 1.2.: Extract of the PathoLearn frontend for students to solve a task. The auto-
matic feedback is displayed. The students get annotation-specific feedback
and a summed-up version of the entire task.

In recent years, AI and ML technologies have supported or even replaced the task of
a pathologist examining tissue slides. It was shown that AI and computer vision algo-
rithms could detect diseases on tissue samples [CJW+18, RRS+22]. The judgment of a
tissue region, whether it is pathologically relevant or not, can vary among pathologists
[RRS+22]. This problem is resolved through algorithmic solutions [RRS+22]. The inte-
gration of AI and ML into the daily work routine of pathologists will only increase in
the upcoming years, so it is crucial to raise awareness and teach the basics of AI and
ML early in education. Therefore, this thesis aims to evaluate and implement an end-to-
end AI platform into PathoLearn that enables students to create AI without requiring
knowledge about programming.

To realize this, different areas of AI and ML will be highlighted. In Chapter 2, the
fundamentals of ML are presented. Pathologists primarily work on WSIs, so state-of-
the-art image algorithms and building blocks are given in Chapter 3. Besides creating
an algorithm, different steps are required to train and evaluate it. These steps form
a lifecycle, which is explained in Chapter 4, including different software solutions that
realize these steps. Afterward, a detailed requirements analysis determines the features
required in the platform (see Chapter 5). Based on these and the previous results, the
design and implementation of the platform are presented in Chapter 6. In Chapter 7,
the platform was tested by users. Finally, in Chapter 8, it is checked whether all defined
requirements are fulfilled. Chapter 9 finishes this thesis with a conclusion and an outlook
on future work.

October 12, 2023 3

2. Machine Learning

This chapter briefly overviews ML and the core concepts needed for creating AI based
on images.

2.1. Overview

For incorporating intelligence into a machine or computer program, many different meth-
ods and fields have emerged [WLLT21]. Figure 2.1 displays the different subfields of AI.

Artificial Intelligence

Planning

Probability

Logic

Knowledge representation

Reason

Machine Learning

SVM

Decision Tree

Adaboost

Naive Bayes

Logistic Regression

Random forests

Boosting

Bagging

Collaborative filtering

K-MEANS/K-MEDOIDS

Clara/Clarans

Deep learning

Reinforcement learning

Transfer learning

Unsupervised
learning

Clustering

Recommendation

Prediction

Regression

Classification

Speech recognition

Machine translation

Text summarization

Text classification

Text proofreading

Information extraction

Speed synthesis

Image classification

Object detection

Target tracking

Image segmentation

NLU

Behavior

Smart robot

Robot application automation software
Intelligent application

 NLP

NLG

Computer Vision

Perception

Cognition and Learning

Supervised
learning

Figure 2.1.: A brief classification of artificial intelligence fields and methods. (Adopted
from [WLLT21].)

4

2.1. Overview

Natural Language Processing (NLP) is about letting programs understand the lan-
guage spoken and written by people (natural language) [CPS13]. This can be further
divided into Natural Language Understanding (NLU) and Natural Language Genera-
tion (NLG). The task of NLU is to process and understand human language [CPS13].
This is done through speech recognition and semantic understanding [WLLT21]. NLG
is generally about text generation using predefined semantics and grammatical rules
[CPS13, WLLT21].

Computer vision tries to extract information from digital visual data, like images or
videos, to understand, interpret or manipulate their content [Gol19, WLLT21]. Its
primary goal is to extract target features from the data. This includes, for example, edge
detection, shape detection, corner detection, and color-based segmentation [WLLT21].
Many different areas of computer vision have risen in the past years.

Figure 2.2 reviews typical computer vision areas/tasks. Image classification involves
identifying and categorizing an entire image into a specific image from a predefined
set of images [WS19]. The first image shows that image classification mainly works
on images containing only one object with one of the given classes. Object detection
extends classical image classification with a localization task. It tries to detect the
objects on the image and draws an appropriate bounding box around them. This method
allows for multiple instances to be present in the image. A more advanced task is
instance segmentation. It intends to achieve a more fine-graded object localization.
Bounding boxes contain many pixels that do not belong to the classified object. Instance
segmentation accompanies that and makes pixel-wise decisions about whether it belongs
to the object. This allows for distinguishing between different instances of objects with
the same class. Semantic Segmentation does not identify objects. Instead, it decides
for every pixel which class each pixel has. The resulting mask covers the entire image
[WS19].

Figure 2.2.: Typical image analysis task in computer vision [WS19].

October 12, 2023 5

2. Machine Learning

2.2. Supervised Learning

ML algorithms aim to find (learn) patterns, mappings, and relationships in the data
to be able to make predictions on new data (see Figure 2.3). The learning happens
through incrementally improving the performance by iteratively changing parameters in
the algorithm. This is known as training. Supervised, unsupervised, and reinforcement

Dataset

Find patterns, mappings and relationships

Machine Learning Algorithm

Incrementally increase performance

Set of rules Predict task result
on new data

Figure 2.3.: Example workflow of a machine learning algorithm. It finds patterns in the
provided dataset. The algorithm tries to improve its performance incremen-
tally. Finally, a set of rules is found, which can be used to get the task result
on new data.

learning are ML subcategories and describe different approaches to how ML algorithms
learn (see Figure 2.1). As supervised learning is primarily used for computer vision tasks
[GBC16], this approach will be explained in more detail. Interested readers can refer to
these publications: [CHP21, Sah20, FLHI+18], for an introduction to the other learning
methods.

Supervised learning is based on data where corresponding labels are available. In com-
puter vision tasks, labels can be classes, bounding boxes, or masks. Two types of prob-
lems can be solved with supervised learning: classification and regression. As explained
in the previous section, classification is about giving the input image a label. Object
detection tasks use regression to approximate the position of the bounding boxes of ob-
jects. Therefore, a classification problem is about mapping the input data to discrete or
categorical output variables. A regression problem maps the input data to continuous
or numerical output [CHP21].

Figure 2.4 shows the graphical difference between classification and regression. Classifi-
cation attempts to estimate an optimal border between data points so that data points
of the same label are on the same side of the border (see Figure 2.4a). Regression tries
to find relationships between the data points and the continuous value. This results in a
function that outputs a continuous value for the input data (see Figure 2.4b). Formally,

6 Jannes Neemann

2.2. Supervised Learning

we can define a supervised learning problem as follows: A labeled dataset D is given
with D = {(x1, y1), . . . , (xN , yN)}, where N is the number of samples, e.g., the number
of images, xi is a concrete instance of D, e.g., an image (also called feature vector), and
yi is the corresponding label. Additionally, f(·) describes the mapping the algorithm
should learn. The label of the new data j is therefore calculated as yj = f(xj). Classi-
fication and regression algorithms aim to minimize the error on the given samples xi in
D and generalize to unseen data samples [CHP21].

20 15 10 5 0 5 10

15

10

5

0

5

10

15

20

(a) Classification algorithm

20 15 10 5 0 5 10

15

10

5

0

5

10

15

20

(b) Regression algorithm

Figure 2.4.: Figures showing the visual difference between a classification algorithm (a)
and a regression algorithm (b). The classification algorithm created a border
separating data points to one of the two labels. The regression algorithm
learned a linear function for approximating the continuous output value
(linear regression).

Often, the dataset does not have a lot of data, which can decrease the algorithm’s
performance. This is where transfer learning (TL) can be helpful. TL is about improving
an ML algorithm of one domain by transferring information from a related domain
[WKW16]. The target domain tries to learn a mapping function fT : xT → yT , where
xT is the input data and yT the corresponding labels. The source domain, on the other
hand, has an already learned mapping fS : xS → yS. The information stored in the
learned mapping fS is used to improve the performance of fT [ZQD+21]. Generally, the
source domain has lots of input data with a larger range (e.g., many different labels), and
the target domain has less input data with a smaller range (e.g., fewer labels). In this
scenario, TL uses the already learned information of the source domain to improve the
performance of the decision function of the target domain [ZQD+21]. How this method
is often used will be explained in Section 3.4.

October 12, 2023 7

2. Machine Learning

2.3. Feedforward Neural Networks

Together with the supervised learning approach, feedforward neural networks (FNN)
are the most used method for realizing computer vision tasks [GBC16]. These networks
contain a variety of different nodes that are connected to form a network. Each node has
several parameters that are updated (learned) during the training. Given the dataset D
with x being the input data, y the corresponding labels, the goal is to find (learn) a θ,
such that

f(x, θ) = ŷ, (2.1)

where the mapping function f is defined by the network and ŷ is the output. Its purpose
is to accurately approximate the desired output y. A successfully trained network can
predict an accurate output estimate ŷ for a new unknown input x′. Feedforward is used
because the input is not passed back through the network.

2.3.1. Artificial Neurons

An Artificial neural network (ANN) often uses artificial neurons as nodes. The idea of
combining multiple nodes into a network is inspired by the inner workings of the human
brain [Bis94]. Neurons in the brain form a dense network with billions of neurons
with up to 10,000 connections per neuron [ACG+09, Zha19]. Neurons communicate
through electrical impulses. Each neuron requires a minimum amount of impulse voltage
from its neighbors to fire an impulse (activation threshold). The network can change
dynamically depending on the experience, e.g., learning in a classroom or a stressful
event [CM08]. Fundamentally, the brain learns by continuously changing the connection
strength between two neurons based on the activity of the neurons [Heb49]. These
changes in the network result in a modification in the subsequent behavior, thoughts,
and feelings [CM08].

Researchers tried to replicate this functionality numerically instead of electrical impulses.
The percetron, created by Rosenblatt in 1957, is, until today, the basis of the artificial
neuron [Ros58]. Figure 2.5 illustrates such an artificial neuron. It accepts n input values
x = (x1, ..., xn). Each input value xi is multiplied with a corresponding weight wi of the
weight vector w (connection strength). All values are summed through the function g.
Further, a parameter b, called bias, is added, which is independent of x. w and b are
elements of θ and therefore can be learned.

The result is the intermediate value z, which can be written as

z = wT x + b. (2.2)

8 Jannes Neemann

2.3. Feedforward Neural Networks

After that, z is passed through an activation function f . It introduces nonlinearity to
the otherwise purely linear computations (see Section 2.3.3). Applying f results in

ŷ = f(wT x + b), (2.3)

completing the computation with the output value ŷ, also called the neuron’s activation
value or prediction.

x1

...
xn

g f ŷ ∈ R

b

w1w1

wnwn

Figure 2.5.: An artificial neuron. It takes n values as input, multiplied with a weight wi,
and summed by the function g. Afterwards, bias b is added. The result is
passed through the activation function f to get the prediction ŷ.

2.3.2. Multilayer Perceptron

A multilayer perceptron (MLP) is a special form of ANN that only contains artificial
neurons [Kan03]. Figure 2.6 displays the structure of a MLP, generally known as a
neural network (NN). It consists of multiple layers. The first layer is always the input
layer, which accepts the input data x such as pixel values. This is followed by multiple
layers of artificial neurons, called hidden layers. Each element of x is passed to each
neuron in the first hidden layer. The calculations are the same as presented in Section
2.3.1. Each neuron of the next layer uses the computed activation values of every neuron
in the previous layer as input. Therefore, this type of layer is also called fully connected
layer [AMAZ17]. Finally, the output layer calculates the class probabilities to form the
final prediction ŷ [Kan03, GBC16, Gé19].

The structure of a MLP allows for storing parameters and activation values in matrices.
The activation value of a hidden layer is stored in a matrix a, where a

[l]
i stores the

value for the i-th neuron in the l-th layer. As each neuron stores a weight for each
incoming connection and a bias, a matrix w and b can be created per layer. This
allows for efficient matrix calculations, and multiple elements of x can be processed
simultaneously (mini-batch processing) [Gé19].

Depending on the number of layers and the number of neurons in each layer, MLPs can
approximate various functions. This is referred to as the network capacity [GBC16].
Increasing the number of layers (network depth) or neurons should increase the network

October 12, 2023 9

2. Machine Learning

capacity. Conversely, the training speed is reduced as more computations must be made,
and more parameters must be updated.

a[0] a[1] a[2] a[3]

x1

x2

x3

a
[1]
1

a
[1]
2

a
[1]
3

a
[1]
4

a
[2]
1

a
[2]
2

a
[2]
3

a
[2]
4

a
[3]
1

a
[3]
2

ŷ1

ŷ2

ŷ

input layer hidden layer output layer

Figure 2.6.: Multilayer perceptron. The input layer represents the input x. Followed by
the hidden layer consisting of artificial neurons. They receive the activation
values a

[l]
i of previous layers, where l indicates the layer and i is the specific

neuron. The neurons in the output layer calculate the network output (pre-
diction) ŷ.

2.3.3. Nonlinear Activation Functions

Artificial neurons only calculate linear functions. This results in the problem that a
deeper network would behave like a single-layer network, because the sum of all layers is
also a linear function. This is prevented by using nonlinear activation functions in each
neuron. These functions are inspired by the thresholding functionality in the human
brain. The neuron only fires (activates) if the gathered impulses are above a certain
threshold (see Section 2.3.1). This thresholding in a NN is realized through the chosen
activation function, where the size of the impulse is given by z.

Figure 2.7 illustrates three different activation functions. The rectified linear unit
(ReLU) is one of the most common activation functions, especially in hidden layers
[GBC16]:

fReLU(z) = max(0, z), (2.4)

10 Jannes Neemann

2.3. Feedforward Neural Networks

plottet on the left. Historically, was the sigmoid function (right) often used:

fsigmoid(z) = 1
1 + e−z

. (2.5)

As the function quickly saturates for smaller and larger z values, the ability to learn
with gradient-based methods is problematic (see Section 2.4). The hyperbolic tangent
(tanh) improved this and is still used in some NNs:

ftanh(z) = sinh(z)
cosh(z) = 1 − e−2z

1 + e−2z
. (2.6)

ReLU is linear for positive z and constant for negative z values. Goodfellow et al.
states that NNs can learn faster if the activation function behaves more closely to a
linear function [GBC16].

10 0 10
z

0

2

4

6

8

10

f R
eL

U
(z

)

ReLU

10 0 10
z

0.0

0.2

0.4

0.6

0.8

1.0

f s
ig

m
oi

d(
z)

Sigmoid

10 0 10
z

1.0

0.5

0.0

0.5

1.0

f ta
nh

(z
)

Tanh

Figure 2.7.: Plots of the rectified linear unit (left), tanh (middle), and sigmoid (right)
nonlinear activation functions.

The output layer of FNNs needs to be handled differently depending on the tasks at
hand. For classification tasks, the activation values of the output neurons have to be
mapped to probabilities in the range of 0 to 1. Given n classes, the output layer has
n neurons without an activation function. For each neuron’s intermediate value zi, the
softmax function is applied:

fsoftmax(zi) = pi = ezi∑n
j=1 ezj

. (2.7)

It maps each intermediate value zi to a probability pi. The sum of all intermediate value
probabilities adds up to 1 to form the final prediction probability vector ŷ of size n.
Regression or segmentation tasks normally do not need a final activation function, as no
probabilities need to be calculated.

October 12, 2023 11

2. Machine Learning

2.4. Backpropagation

The backpropagation algorithm enables training for multilayer ANNs. The goal of the
algorithm is to decrease the distance (error) between the prediction ŷ and the expected
output y by iteratively updating θ [RHW86].

Generally, the backpropagation algorithm is a gradient-based learning method [LBOM12].
It uses the gradient of a function to enable NN learning. Additionally, the gradient de-
scent algorithm is used to update the parameter of the NN. Gradient descent is an
iterative optimization algorithm for finding the local minimum of a differentiable func-
tion [LSJR16]. In the case of backpropagation, this function is called the cost function,
which calculates the average error between the predictions ŷ of the ANN and the ex-
pected output y of the labeled dataset [LBOM12]. The error or loss between a single
prediction ŷi and a labeled data point yi is calculated by the loss function L(yi, ŷi).
This can be an arbitrary (piecewise) differentiable function returning a scalar value. For
classification tasks with n classes the cross-entropy loss is often used:

LCE = −
n∑

j=1
yjlog(ŷj). (2.8)

The higher the difference between the probability ŷi and yi, the bigger the loss value.
The following function describes the formal definition of the cost [LBOM12]:

J (θ) = 1
m

m∑
i=1

L(yi, ŷi), (2.9)

with m being the number of training elements. Thereby, the objective of the algorithm
is to find the local minimum of the cost function, as this means that the ANN makes
few false predictions

argmin
θ

J (θ). (2.10)

The gradient of J is used to find the local minimum. Specifically, it uses the negative
gradient, as following the positive gradient would lead to a local maximum. Therefore,
the update of θ can be defined as:

θt+1 = θt − ε∇J (θt), (2.11)

where t is the current step of the algorithm and ε is the learning rate. The update size is
determined by the size of the gradient weighted by the learning rate. The learning rate
is a parameter that must be chosen with care. As displayed in Figure 2.8, the gradient
descent algorithm was applied for 30 steps with different learning rates. If the learning
rate is too low, the algorithm needs many steps before converging. With a high learning
rate, updates can overshoot or even diverge, which could result in the failure to find the

12 Jannes Neemann

2.4. Backpropagation

2 1 0 1 2
x

0

1

2

3

f(x
)

=0.01
Steps=30

2 1 0 1 2
x

0

1

2

3

f(x
)

=0.1
Steps=30

2 1 0 1 2
x

0

1

2

3

f(x
)

=0.9
Steps=30

Figure 2.8.: Displays the effect of different learning rates ε for finding the local minimum
with Gradient Descent. If the learning rate is too low, the algorithm needs
many steps before reaching the local minimum (left). A well-chosen learning
rate can find the local minimum in adequate steps (middle). If the learning
rate is too high, updates can overshoot or even diverge from the actual
function (right).

local minimum. A well-chosen learning rate is important for successful ANN learning in
an acceptable amount of time.

In a multilayer NN, the forward pass describes the input data flow and processing
through the neuron layers. As already explained in Section 2.3.2, each layer uses the
previous layer’s output to calculate its output value. This results in a composite func-
tion, as each neuron uses an activation function f to calculate its output. To calculate
the gradient, the backpropagation starts at the output layer and flows through each
layer back to the input layer. This is called a backward pass, hence the name backprop-
agation [LSM+20]. Due to the composite function, the algorithm uses the chain rule
from calculus to calculate the gradient of the cost function. Given by Equation 2.9, the
cost function gradient results from the average of the individual gradients of the lost
function:

∇J (θ) =

∂J (θ)
∂w1...

∂J (θ)
∂wn

∂J (θ)
∂b

 =

1
n

n∑
i=1

∂
∂w1

L(yi, ŷi)
...

1
n

n∑
i=1

∂
∂wn

L(yi, ŷi)

1
n

n∑
i=1

∂
∂b

L(yi, ŷi)

. (2.12)

This equation only describes a single neuron of one layer. If the layer has multiple
neurons, θ would be a matrix where the number of columns equals the number of
neurons in that layer.

Considering a FNN with a single hidden layer and one neuron in each layer, the gradient

October 12, 2023 13

2. Machine Learning

for the input layer (w1) for one training example i is given by

∂L
∂w1

= ∂L
∂ŷi

∂ŷi

∂ai

∂ai

∂w1
, (2.13)

with ai being the output of the neuron in the hidden layer. The gradient is computed by
repeated application of the chain rule. With each layer going back, another chain rule
is applied. Given the loss function L = 1

2(yi − ŷi)2, with L′ = −(yi − ŷi), Equation 2.13
can be written as

∂L

∂w1
= −(yi − ŷi)w2f

′
2(w2ai)xf ′

1(w1xi), (2.14)

where f1 is the activation function of the hidden layer and f2 is the activation function
of the output layer. This is repeated for the remaining training examples.

Due to the repeated calculation of the chain rule, many terms are used multiple times.
Additionally, the activation values of the forward pass can be reused in the backward
pass (see ai in Equation 2.14). This makes backpropagation an efficient algorithm for
calculating the gradient [LBOM12].

The presented backpropagation algorithm, also known as batch gradient descent [TZZ23],
uses the entire training data before updating the parameters. This can make the cal-
culations very slow. Additionally, datasets that do not fit into the memory can not
be trained with batch gradient descent [TZZ23]. Therefore, new methods have been
developed that do not use the entire dataset.

The most straightforward optimization is doing a parameter update for every training
example. This is known as Stochastic Gradient Descent (SGD). This algorithm is much
faster. Due to the frequent updates with high variance, the objective functions fluctuate
heavily. Batch Gradient Descent finds a local minimum based on the range of the
parameter. SGD can potentially jump to a new or better local minimum. This causes
the risk that the update overshoots (see Figure 2.8 (right)), which hinders the algorithm’s
convergence [TZZ23].

Mini-batch gradient descent is the most often used method when training a NN [TZZ23].
Instead of the entire training data, it uses smaller batches, commonly between 16 and
256. This allows to choose the batch size according to the dataset and the memory
size. Nowadays, the term SGD is used for mini-batch gradient descent [TZZ23]. Using
mini-batches reduces the fluctuations, resulting in a more stable convergence while keep-
ing nearly the same performance as the original SGD due to highly optimized matrix
operations [TZZ23].

Additional methods have been developed on top of mini-batch gradient descent to over-
come specific challenges. The Momentum method [RM87] accelerates SGD in the rele-
vant direction and reduces fluctuations [Qia99]. This is done by adding a fraction γ of

14 Jannes Neemann

2.4. Backpropagation

the previous update step ut−1 to the current update step:

ut = γut−1 + ε∇J (θt)
θt+1 = θt − ut.

(2.15)

As mentioned, choosing the correct learning rate is important for fast and successful
convergence. A learning rate scheduler [RM51] adjusts the learning rate if the change
in the cost function result is below a threshold. The scheduler and threshold must be
defined before the training and do not include specific dataset characteristics. Many
different methods have been developed that enable learning rate adjustments based
on the importance of the parameters in the NN. Adagrad [DHS11], Adadelta [Zei12],
RMSprop [TH12], Adam [KB17], and AdamW [LH19] being the one widely known and
used. How they work is beyond the scope of this thesis, but interested readers can refer
to the original papers referenced above or [TZZ23].

2.4.1. Overfitting

The training data is used to minimize the cost function J . This can bring the risk that
the trained NN does not generalize well for unseen data, with possible new patterns. This
is called overfitting [LG00]. The goal of a learning algorithm should be to achieve a low
training error (cost) and low test cost, also called generalization error. Additionally, the
gap between the training and generalization errors should be small [GBC16]. A model
with low capacity cannot minimize the cost function, as it cannot capture all patterns in
the training data. If the model has a high capacity, it can capture training data patterns
that are not present in unseen data (test data), resulting in a larger generalization gap
(see Figure 2.9).

Figure 2.9.: With low network capacity, the training and generalization error is high
(underfitting). If the capacity gets too large, overfitting occurs [GBC16].

October 12, 2023 15

2. Machine Learning

One method of reducing the risk of overfitting is dropout [SHK+14]. Training multiple
different networks and combining their prediction should improve the overall perfor-
mance. Each network has a different architecture or was trained on different data to
generalize better. This is computationally very expensive. Dropout mitigates this by
randomly dropping out neurons in the NN, creating thinned new sub-networks (see Fig-
ure 2.10). Dropping a neuron also removes all connections to it. A neuron is dropped
with a probability of p, which is often set to 0.5 and recalculated for each training batch
[SHK+14]. This dropout of neurons forces the active neurons to learn features indepen-
dently without depending on the input of other neurons [GZM20]. When testing the
NN, the entire network without dropout is used. To average the weights of every trained
sub-network, the weights of a neuron are scaled down by their probability p.

(a) Standard neural network (b) Neural network after dropout

Figure 2.10.: Affect of applying dropout. Left: A standard NN with a hidden layer.
Right: The NN after applying dropout. The crossed neurons are dropped.
(Adopted from [SHK+14].)

2.4.2. Batch Normalization

Another method for speeding up and improving the reliability of models is batch normal-
ization [IS15a]. It normalizes every layer in the NN, and the normalization is computed
for each mini-batch [IS15a]. Normalization speeds up the convergence, and higher learn-
ing rates can be used [IS15a, LBOM12, GZM20]. As Figure 2.11 displays, the input data
is normalized to have a mean of zero and a variance of one. Additionally, batch normal-
ization has its own learnable parameters γ and β. These parameters shift and scale the
normalized data [GZM20]. As the network learns them, each batch normalization layer
can find optimal parameters for the best prediction result.

16 Jannes Neemann

2.5. Datasets

Figure 2.11.: Difference between neurons without and with batch normalization. The
input data is normalized to have a mean of zero and a variance of one. The
parameters γ and β are learnable. (Adopted from [GZM20].)

2.5. Datasets

Datasets are the foundation of ML algorithms and ANN. The data should represent
the task that should be solved. Preprocessing is important, as the data is essential for
learning success. Structuring the data and handling empty (NULL) values are examples
of preprocessing steps [CHP21]. Especially for computer vision tasks, resizing the im-
ages to the same size ensures that the network learns the features correctly. This can
be extended with image normalization, where the channel-specific mean and standard
deviation normalize the image channel:

cnorm[j][i] = c[j][i] − mean[j]
std[j] , (2.16)

where j is the current channel, e.g., red, green, or blue, c[j][i] is the current pixel value
of channel j, and mean[j] and std[j] are the mean and standard deviation values for
channel j respectively [Nor23].

2.5.1. Dataset Splitting

Besides preprocessing the entire dataset, splitting it into a training set, validation set,
and test set is common [Gé19]. The training set is used for training the NN. The training
aims to learn general features for the task defined. Therefore, it is important to evaluate
with the test set how the network would perform on data that it has not seen before.
The validation set is used as an evaluation set during training. After a defined number
of training iterations, the network is evaluated with the validation set. It identifies if
the chosen NN with its hyperparameters (e.g., number of layers and neurons, learning
rate, see Section 2.4) is correctly learning without running all training iterations.

October 12, 2023 17

2. Machine Learning

2.5.2. Digital Pathology Challenges

The already introduced WSIs come with additional dataset challenges. The high reso-
lution of WSI (100, 000 × 100, 000 pixel is not uncommon) makes the processing more
complicated [RRS+22]. Different methods must be applied to fit the images onto the
hardware, e.g., scale the entire slide to a much smaller resolution or split it into multiple
images. The first method is rarely used, as much detail and information is lost. Splitting
the images into small patches keeps all the information, but contextual information is
lost as, for example, tumor regions are split up. As explained in Chapter 2, most ANNs
need labels for training. In pathology, the creation of labels is an expert-driven process.
Only experts are capable of annotating a tissue slide with the correct labels. Considering
the number of images and the size of each slide, this is a time-consuming and laborious
task. Therefore, creating a dataset with suitable labels is very expensive and takes a
lot of time. This is considered a major bottleneck in training NNs for pathology-specific
tasks [CAB+21].

2.5.3. Data Augmentation

To overcome the issue of limited dataset size, data augmentation techniques are a com-
mon way to increase the size of the training set. Fundamentally, this is achieved through
inserting random variations into the existing training images while preserving their labels
[OSP+22]. The possible augmentation algorithms range from common image manipula-
tion to NN, which can generate new arbitrary images [XYFP23].

Original Image Rotate HorizontalFlip VerticalFlip

ISONoise Blur RGBShift RandomBrightnessContrast

Figure 2.12.: Different augmentation methods applied to an image. (Image used from
[SOPH16].)

Image manipulation algorithms are often used, as they can be easily applied during train-
ing. Methods like translation, rotating, and flipping are examples of geometric trans-

18 Jannes Neemann

2.6. Convolutional Neural Network

formations on images [XYFP23]. Additionally, noise, blur, or changes in the brightness
of the images can simulate the variations occurring in image capturing with a WSS.
As displayed in Figure 2.12 these methods can change the original image drastically.
Therefore, evaluating which methods can be applied without changing or removing the
relevant features that should be learned from the image is necessary. For example, an
image of a city skyline can be horizontally flipped but not vertically.

2.6. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a particular case of FNN [TM20]. They
have shown to be very successful in the fields related to pattern recognition, especially
in image processing and voice recognition [AMAZ17]. CNNs implicitly assume image-
like input data [TM20]. This allows encoding specific properties directly into the NN
architecture and increases computation efficiency [TM20, AMAZ17].

Like artificial neurons, CNNs have emerged from findings in medicine. Experiments per-
formed on cats by David H. Hubel [Hub59] and T. N. Wiesel [HW59] revealed significant
insights into the structure of the visual cortex. Neurons in the visual cortex only react
to a small region of the visual field (small local receptive field). The combined receptive
fields of all neurons cover the entire visual field. They also showed that some neurons
only react to specific features in their local receptive field, e.g., horizontal or vertical
lines. Additionally, neurons could have the same receptive field but react on different
features. In addition, some neurons use the output of the neighboring neurons to react
to more complex patterns. This creates a network of neuron layers, which can recognize
any simple or complex feature in the entire visual field (see Figure 2.13) [GM04, Gé19].

Figure 2.13.: Neurons in the visual cortex only react to a small visual field region (small
local receptive field), displayed by the blue circles on the house. Some
neurons react to specific features like corners or edges. Others use the
output of the neighboring neurons to create a greater receptive field for
detecting more complex features like shapes or objects. (Adopted from
[Gé19].)

October 12, 2023 19

2. Machine Learning

CNNs use similar feature detection with interconnected neurons to detect simple and
complex features. Besides the already introduced linear layers and activation functions,
they use additional layers called convolutional layers and pooling layers.

2.6.1. Convolutional Layer

The convolutional layer uses the same concept as the visual cortex. Every neuron has a
local receptive field, meaning not every neuron connects to every input value (e.g., every
pixel), where the output and input values are fully connected (see Section 2.3.2). This
is commonly implemented with a convolutional kernel [TM20]. In the case of an image,
this kernel uses a local region of the image and applies a filter. The filter is also called
feature detector, which aims to extract specific features from the input image [AAS20].
Therefore, different types of filters can be used. The kernel slides over the image until
every pixel is covered. Figure 2.14 visualizes a 3 × 3 × 3 filter applied to an image. For
each image channel, a 3×3 kernel is used. Afterward, all calculated values are added by g
to form a combined value passed through an activation function f , creating an activation
value. This creates a new ”image” called activation map. This activation map contains
the extracted features of the image. Therefore, in the case of a convolutional layer, the
map is known as a feature map [AAS20]. Besides having multiple kernels per filter, a
convolutional layer can use multiple filters to create a stack of feature maps.

R G B

Receptive FieldReceptive Field FilterFilter

g f

Activation MapActivation Map

Activation valueActivation value

Figure 2.14.: Visualization of a convolutional layer. A 3 × 3 kernel is applied to each
input channel. Resulting in a 3 × 3 × 3 filter. The values for each kernel
are combined by g and passed through an activation function f , resulting
in a value of the activation map.

20 Jannes Neemann

2.6. Convolutional Neural Network

Convolution

The sliding filter mechanism of a convolutional layer can be implemented using a math-
ematical convolution (this is why the layer is called a convolutional layer). Given the
functions x and w, the convolution (x ∗ w)(a) is defined in all dimensions as:

(x ∗ w)(a) =
∫

x(t)w(a − t) dt, (2.17)

where a is in Rn for any n ≥ 1. The visual effect of a convolution with the Gaussian
function w(a) = exp(−x2) is displayed in Figure 2.15.

∗exp(−x2)

Figure 2.15.: The convolution result of an input image with the Gaussian function
w(a) = exp(−x2). The Gaussian function has a blur effect on the in-
put image.

In the context of CNN, the image-like input data does not allow for continuous functions
due to the discrete nature of image sensors [TM20]. The input image x and the kernel
w can be expressed as matrices. The input image is of size xn1×n2 and the kernel of size
wm1×m2 , with m1 ≤ n1 and m2 ≤ n2. With those two matrices, the discrete convolution
is defined as:

(x ∗ w)(i, j) =
m1−1∑
k1=0

m2−1∑
k2=0

xi+m1−k1,j+m2−k2wk1,k2 . (2.18)

Figure 2.16 illustrates the application of a 3 × 3 kernel on a 6 × 6 input image. The
resulting feature map has a size of four 4×4. This shrinking of the output map is a com-
mon effect when applying a sliding filter to images. As the picture shows, no activation
values can be calculated for the border pixels, as the kernel cannot slide further. This
results in a dimension reduction of the output image. If another convolution layer uses

October 12, 2023 21

2. Machine Learning

1

0 1 1 1 0 1

11000

0 1 0 1 1

110001

0 1 0 0 11

1 1 1 1 0 1

4 5 5 5

3 2 3 5

3 3 3 4

5 4 2 4

1
11

1

1

1 0

110

Figure 2.16.: Visualizes the convolution operation on a 6 × 6 input image with a 3 × 3
kernel. The resulting feature map is of size 4 × 4, as the sliding kernel
cannot process the border pixel.

the feature map as input, the output will be again reduced in its dimensions. Addition-
ally, the dimensions could be further reduced using a different kernel size or stride. The
stride determines the size of the sliding step. After calculating the activation for one
pixel, the kernel moves stride-many pixels further on the input image. In Figure 2.16, a
stride of size 1 was used. If a stride of 2 had been used, the resulting feature map would
only be of size 3 × 3.

Padding

This dimension reduction results in two problems. First, information is lost on the
border of the image. Therefore, no features can be learned from them. Second, smaller
feature maps reduce the prediction quality of the CNN [AAS20]. To overcome these
problems, padding is added to the input image and feature maps.

This method is called zero-padding, as zeros are added around the border of the input.
The amount of padding p determines the size of the output. Three different modes can
be defined: full, same, and valid-padding. Valid-padding uses p = (0, 0) (no padding),
as displayed in Figure 2.16. In the case of full-padding, p = (m1 − 1, m2 − 1) increases
the output’s dimension. Same-padding keeps the output dimension equal to the input
dimension. The size of the padding depends on the filter size and stride value.

Sometimes, the reduction of the input size is necessary. Smaller input reduces the com-
putational effort and therefore speeds up the CNN [AAS20, TM20]. To effectively reduce
the size without losing feature information requires different algorithms. In CNNs, these
are implemented in so-called pooling layers [AAS20, TM20].

22 Jannes Neemann

2.6. Convolutional Neural Network

2.6.2. Pooling Layers

The purpose of pooling layers is to reduce the dimension of the feature maps while
keeping the most important features. Pooling layers work with the same mechanism as
the convolutional layer. A sliding kernel moves over the input image or feature map and
extracts new values depending on the chosen kernel. Instead of a convolution operation,
the kernel uses only the values of the input. Commonly Max-Pooling- or Mean-Pooling-
Layers are used [TM20, AAS20]. As displayed in Figure 2.17, pooling layers mostly
use a 2 × 2 kernel with a stride of two [TM20, AAS20]. This creates non-overlapping
rectangular neighborhoods. In each neighborhood, the maximum value is selected. In
the case of a Mean-Pooling-Layer, the average of all values in the neighborhood would be
calculated. In this Max-Pooling-Layer configuration, the output would be an activation
map of size 3 × 3.

4 9 5 5

3 2 3 5

7 3 3 4

5 4 2 1

9 5

7 4

max-pooling

Figure 2.17.: Application of a Max-Pooling-Layer on 4 × 4 input data. The layer uses
a 2 × 2 kernel and returns the maximum value of every rectangular neigh-
borhood.

October 12, 2023 23

3. Building Blocks of Neural Networks

After introducing the general inner workings of NNs and CNNs, this section presents
different building blocks and state-of-the-art NNs to realize computer vision tasks. These
NNs are comprised of many of the previously presented layers. Combined with the
backpropagation algorithm, they can learn intricate features from the input data. Such
NNs are often grouped under the category deep learning (DL) [LBH15].

3.1. Classification

As explained in Chapter 2, classification tasks in computer vision are about giving an
entire image a class label. The labels can either be binary, e.g., whether the image is
tumors or not, or use multiple labels, e.g., what type of cancer is on the image. Many
algorithms and ANN architectures have been developed to solve classification problems
[LLR+22]. Often, ANN architectures based on CNNs are used [LLR+22, DCM+21].
State-of-the-art CNN architectures use specific combinations of convolutional, pooling,
and fully connected (FC) layers (see Section 2.3.2) [DCM+21]. The primary goal of con-
volutional and pooling layers is to learn features from the training images to distinguish
the defined classes. The FC layers are behind the feature learning layers and map the
two-dimensional feature maps to the actual class probabilities.

LeNet-5 is known as the first CNN architecture, which was used for recognizing hand-
written characters [LBBH98]. As displayed in Figure 3.1, it uses a simple combination
of convolutional, pooling, and (FC) layers. Later architectures use wider (larger ker-
nels) and deeper (more layers) models (e.g., AlexNet [KSH12] and VGG [SZ15]). Using
larger kernels and more layers allows for learning more complex features. On the other
hand, this results in many learnable parameters. For example, the VGG-16 architecture
uses 16 convolutional layers (excluding the pooling layers) and has 138 million learnable
parameters. As every parameter is stored on the GPU’s memory, the memory profile
is very high, and the learning is slow, as complex gradient calculations are needed to
update every parameter [AŠ20].

Increasing the number of used layers should theoretically increase the model’s perfor-
mance [AŠ20]. When using backpropagation as a learning algorithm, degradation can
appear on deeper networks. As the derivates of each layer influence the previous layer,

24

3.1. Classification

1
32

32

input

6
28

28

conv1

6 14

14

pool1

16 10

10

conv2

16 5

5

pool2 1
12
0

fc1

1 84

fc2

1 K

fc3

Figure 3.1.: Diagram of the LeNet-5 architecture. It uses two convolutions (yellow), two
pooling (red), and three fully connected layers (purple). The last layer has
K output neurons. This can be adjusted to the number of classes/labels in
the chosen dataset. The model requires 32 × 32 images with one channel as
input (green) [LBBH98].

small partial derivatives are exponentially passed through the network, resulting in the
vanishing gradient problem. Too small gradients hinder the learning process, as the
algorithm possibly converges too early, resulting in degradation and a high training
and test error [HZRS15]. He et al. [HZRS15] proposed residual learning to overcome
degrading. As explained in Section 2.6, a convolutional layer tries to extract specific
features from the input data. The layer learns a mapping of the input data x to the
features. The presented architectures rely on finding specific mappings H(x) in the
convolutional layer stacks to reach good performance. In residual networks, instead of
expecting that the layers successfully learn the H(x) mapping, an explicit residual func-
tion F(x) := H(x) − x can be approximated. The original mapping, therefore, becomes
F(x) + x [HZRS15]. In a FNN skip connections are used to realize this function. As
displayed in Figure 3.2, the skip connection adds the input x to the output of the last
layer in the stack before it is passed through the activation function. The skip connec-
tion uses a simple identity function and adds no additional parameters or computational
complexity to the network [HZRS15]. This architecture is also called a residual block.

As mentioned in Section 2.6, convolutional and pooling layers can change the dimension
of the input data x. The skip connections perform a projection with 1 × 1 convolutional
layers to match the dimension of the output of F(x). The skip connections enable
passing information from previous layers to layers much further in the network. This
allows much deeper networks, as information is preserved and the degradation process
is reduced.

October 12, 2023 25

3. Building Blocks of Neural Networks

The residual networks (ResNets) use different residual blocks depending on the depth of
the network (see Figure 3.3). It uses two 3×3 kernels for shallower networks or two 1×1
kernels and a 3 × 3 kernel for deeper networks. The 1 × 1 kernels are for reducing and
restoring the input data’s dimension. The 3×3 kernel operates on smaller input/output
dimensions, decreasing the computational effort and the overall training time [HZRS15].

layer 1 f(x)

activation

layer 2 ⊕
add

F(x) + x

f(x)

activation
x

skip connection
(identity)

x

F(x)

Figure 3.2.: A residual block uses a skip connection to add the input x present before
the first layer to the output of the last layer. The stack of layers learns the
residual function F , and x is added elementwise.

+ +

Figure 3.3.: Different residual blocks. Left uses two 3 × 3 kernels. The right diagram
displays a ”bottleneck” residual block. It uses two smaller 1 × 1 kernels and
one 3 × 3 kernel [HZRS15].

Convolutional layers are always stacked sequentially in the presented architectures and
building blocks. Therefore, the selected kernel size in each layer is essential for the
feature extraction. The inception block enables parallel use of different kernel sizes

26 Jannes Neemann

3.1. Classification

[SLJ+14]. Therefore, simple features with smaller kernel sizes and complex features with
larger kernels can be learned simultaneously. Figure 3.4 displays the architecture of the
inception block. It uses a variety of 1 × 1, 3 × 3 and 5 × 5 kernel sizes. It uses a similar
concept of dimension reduction as the ”bottleneck” residual block by first applying a 1×1
convolution kernel (yellow) to reduce dimensions and then applying the larger kernels
(blue) to increase the performance. In the last layer, all paths are concatenated to create
a combined feature map. This inception block was first introduced and integrated into

Previous layer

convolutions convolutions

convolutionsconvolutions

convolutions

max pooling

convolutions

Filter
concatenation

Figure 3.4.: The inception block. (Adopted from [SLJ+14].)

the GoogleNet architecture in 2014 [SLJ+14]. Since then, several versions of architectures
have been created that utilize inception blocks [IS15b, SVI+15, SIVA16]. Some also
extended the inception block with residual blocks by adding skip connections [SIVA16].

In recent years, Transformer networks have shown promising results in computer vision
tasks, outperforming state-of-the-art CNN [BCG+21]. They were first introduced in
NLP, but their concepts could be translated to images [VSP+17]. Fundamentally, they
do not use convolutional operations [BCG+21]. Therefore, they are not explained in
more detail in this thesis.

October 12, 2023 27

3. Building Blocks of Neural Networks

3.2. Object Detection

Object detection tasks extend the typical classification task. As Chapter 2 mentions,
object detection involves localizing a specific class/object on an image. This makes the
task complex, as the object’s spatial position and size are relevant for the detection (see
Figure 3.5). Two main approaches have successfully detected objects on images: object
detection based on regions and object detection based on regression.

Figure 3.5.: Bounding boxes drawn around the nucleus of cells. The color indicates a
specific label. These bounding boxes can be used to train object detection
NN. (Image and bounding boxes obtained from [AAH+22].)

Object Detection Based on Regions

As illustrated in Figure 3.5, the objects to be detected may vary in size. Solving this task
with state-of-the-art CNN architectures (see Section 3.1) would require using different-
size sliding kernels to ensure no objects are missed during feature extraction. Addi-
tionally, multiple instances of the same object could be present in the image. Hence,
a thorough and precise search of the entire image is necessary to avoid overlooking
any probable object positions. The training of such a CNN is very complex and time-
intensive. To reduce the number of regions to analyze, the method of region proposal was
developed [UvGS13, ZJ17]. Region proposal figures out the possible regions of interest
(ROI) on the image where an object could be located in advance, so fewer regions must
be investigated for localization and classification. Different algorithms can be used for
finding those regions, e.g., selective search, edge Boxes, etc. [ZJ17].

The Regions with CNN features (R-CNN) [GDDM14] architecture, developed by Gir-
shick et al. in 2014, is one of the first methods that combined region-based proposals
with CNNs. It uses the selective search algorithm to propose approximately 2,000 ROIs.
For each ROI, a CNN is trained separately. The ROIs are cropped and warped because
FC layers only work on fixed-size input and output [ZJ17]. The learned features are

28 Jannes Neemann

3.2. Object Detection

combined with some classifier algorithm or NN (e.g., Scalable Vector Machine or FC
layers in combination with the softmax activation function) to classify which object is
present in the image. An additional NN comprised of FC layers predicts the bounding
boxes of the found object [GDDM14].

As training a CNN for every ROI is time-consuming, improvements were proposed. The
Fast R-CNN trains a CNN on the entire input image and makes region proposals on the
learned feature maps [Gir15]. As the classifier and regression model only accept fixed-
size input vectors, the ROIs are resized through ”ROI pooling” [ZJ17]. ROI pooling
is based on the Spatial Pyramid Pooling layer proposed by He et al. [HZRS14]. As
Figure 3.6 displays, each ROI is divided into a grid that matches the desired output
size. Due to the different aspect ratios of the ROI, the grid cells can be of different sizes.
In each grid cell, max pooling is applied, resulting in the required output data size.

Divide ROI into grid max pooling

0.91

0.73

0.97 0.51

Figure 3.6.: Application of ROI pooling onto an example feature map.

The selective search algorithm reduces the overall performance, as it runs on the CPU
and is generally compute-intensive. The Faster R-CNN architecture uses a NN called a
Region Proposal Network (RPN) [RHGS16]. This NN is trained to propose the ROIs.
The overall speed of the R-CNN network is increased as the training and proposing can
be done on the GPU.

Object Detection Based On Regression

The presented region-based methods use two main stages: generating ROI and making
predictions on the ROIs (bounding boxes and class probabilities). You Only Look Once
(YOLO) methods skip the ROI generation process and use a regression approach. As
Figure 3.7 displays, the regression idea is based on dividing the image into a grid of
size S × S, and each grid cell predicts bounding boxes with a confidence score and class
probabilities, removing the necessity of the region proposal algorithm [RDGF16].

October 12, 2023 29

3. Building Blocks of Neural Networks

Figure 3.7.: The general method of You Only Look Once. The image is divided into a
S × S grid. Bounding boxes with a confidence score and class probabilities
are predicted for each grid cell. In the final step, these are combined to
create the final object detections [RDGF16].

The main advantage of the regression method is faster prediction. This is especially
important for object detection on videos. The model prediction must be as fast or faster
as the video’s frames per second (FPS). If it can reach 30 FPS, the model is capable
of real-time object prediction. Neither of the presented region-based object detection
models reaches this threshold [RDGF16]. The YOLO models, on the other hand, can
reach hundreds of FPS. [RDGF16, TC23]. Higher prediction speeds often come with a
tradeoff in accuracy [RDGF16, TC23].

3.3. Image Segmentation

As briefly introduced in Chapter 2, image segmentation is an extension of object detec-
tion. Image detection is about finding the concrete shape of an object on an image, not
just the bounding box. As displayed in Figure 3.8, concrete annotations or masks of the
objects in the image are needed to train segmentation NN successfully.

A state-of-the-art instance segmentation NN is the Mask R-CNN [HGDG18] architec-
ture. It extends the Faster R-CNN with an additional step after the ROI pooling for
generating segmentation masks. For each ROI, a CNN is trained that outputs a binary
mask. The used CNN is known as a fully convolutional network (FCN) [HGDG18].
FCNs only consist of convolutional, pooling, and upsampling layers [LSD15]. There-
fore, they allow arbitrary input sizes, as no FC layers are present. Upsampling layers

30 Jannes Neemann

3.3. Image Segmentation

Figure 3.8.: Annotations of the nucleus of cells. These offer a precise annotation of
the nucleus compared to bounding boxes. The color indicates a specific
label. Those polygons can be used to train segmentation NN. (Image and
annotations obtained from [AAH+22].)

can be interpreted as an inverse convolution operation with a fractional stride of 1
s

and
is implemented using interpolation [LSD15]. Figure 3.9 displays the architecture of a
FCN. It uses the same structure as presented in the previous architectures but does not
output a one-dimensional vector. Instead, it outputs K maps with the same size I as
the input image. This allows for pixel-wise predictions, which can be used for semantic
segmentation [LSD15]. The upsampling layer, also called deconvolution layer, ensures
that the input and output sizes are equal. The primary difference between the output of

3
I

Input

64 64
I

conv1

64 64
I/
2

conv2

256 256 256 I/
4

conv3

512 512 512 I/
8

conv4

K I/
8

conv5

K
I

upsample

K
I

softmax

Figure 3.9.: A fully convolutional network. It can process an arbitrary input size K and
output a size K × I map as it only uses convolutional operations. Pooling
layers are used to downsample the data (orange). The Upsampling layer
(blue) increases the map dimension to the desired output size. A final
softmax layer is used to get pixel-wise probabilities.

October 12, 2023 31

3. Building Blocks of Neural Networks

a classification CNN presented in Section 3.1 and a FCN is shown Figure 3.10. Instead
of outputting probabilities for each provided label through FC layers, a FCN outputs
probabilities for each label for every pixel in the input image through deconvolution
layers. Additionally, FCN can use skip connections from lower layers to higher layers to

Figure 3.10.: A classic CNN outputs probabilities whether a cat is on the image or not.
The FCN outputs a heatmap of the probabilities for each pixel if a cat is
visible [YMW+20].

combine information and improve prediction performance, as shown with the ResNet ar-
chitecture (see Section 3.1) [LSD15]. Therefore, the Mask-RCNN trains a FCN for each
ROI. In combination with the predicted class, each mask can be labeled individually to
enable instance segmentation.

Another prominent architecture, especially for medical image segmentation, is the U-
Net architecture [RFB15]. The main difference between FCN is that it uses transposed
convolutional layers instead of interpolation for upsampling. Those layers can be learned
to help recover spatial information [RFB15]. Figure 3.11 displays the building blocks
of the architecture. It can be split into two parts: the encoder and decoder path. The
encoder path uses several convolutional and pooling layers to downsample the input
image and learn the feature maps. The decoder pass uses the feature maps and reduces
the number of channels. The segmentation map produced has the same width and
height as the input image, and the channels match the number of labels defined. The
skip connections concatenate the feature maps learned in the decoder path with the
corresponding layer in the decoder path. These feature maps contain high-resolution
features about the image and support the decoder path to construct a new image.

Like the R-CNN architecture family, the U-Net uses state-of-the-art CNN architectures
to learn the input image’s features in the decode path. These CNNs are essential for

32 Jannes Neemann

3.3. Image Segmentation

successful object detection and segmentation, so the selected architecture is often called
a backbone. A common technique for those backbones is to use already trained models on
large datasets to improve the general performance and reduce the necessity of extensive
training data.

Figure 3.11.: The U-net architecture [RFB15].

October 12, 2023 33

3. Building Blocks of Neural Networks

3.4. Pre-Trained Models

As already mentioned, having large amounts of training data is essential for the per-
formance of deep CNNs. Often, this data is not available for specialized tasks. As
mentioned in Section 2.2, TL is used to transfer information from a trained model to
improve the performance of another model. As displayed in Figure 3.12, the pre-trained
model was first trained on a larger dataset, e.g., the ImageNet dataset [RDS+15], that
captures a variety of different images. The features (weights) learned are then transferred
to the model of the specialized task.

train

trainSmaller Dataset

Transfer weights

CNN

Task 2

CNN

Task 1Larger Dataset

Figure 3.12.: Transfer Learning in the case of CNN training. The weights of a CNN
trained on a larger dataset can be used to train the CNN on smaller datasets
to increase its performance and reduce training time.

As explained in Section 2.6, the first layers in a CNN capture simpler features, like lines
or shapes. Only the last layers capture the task-specific features. Thereby, those layers
are replaced. In the presented architectures, these are the FC layers. Their weights are
learned during the training (see Figure 3.13).

A comparison in Section A.1 showed that pre-trained models have an approximately
20% higher accuracy on the test dataset. Additionally, they converge faster. It was
also tested how the model performs if a pre-trained model was trained on a completely
different domain (ImageNet) or a comparable medical domain (histology images). The
ImageNet dataset used for the pre-trained model contains 1.281.167 training images and
one thousand different classes. The histology dataset contains 159.267 training images
and only two different classes. The test accuracy on the ImageNet dataset showed
an approximate 0.5% higher accuracy than the medical domain (99.25% and 98.74%).
Therefore, it made nearly no difference which pre-trained model was used. Whether it
is generally true that a comparable performance can be accomplished with pre-trained
models from the same domain with potentially less data must be evaluated in a more
complex test.

34 Jannes Neemann

3.4. Pre-Trained Models

. . .

Pre-trained layers

K

Replaced layers

Transfered pre-trained model

Figure 3.13.: Diagram of a model that uses transfer learning to train. It uses pre-trained
layers in the first layers and untrained layers in the last layers. The last
layers are then trained in the training process to fit the required specifica-
tions of the task.

Other literature also confirms that pre-trained models show better performance and save
time, as no laborious feature engineering and fine-tuning of the NN is needed to receive
good results on the dataset [SRG+16, KBKT17, JNS22].

October 12, 2023 35

4. The Artificial Intelligence Lifecycle
and Software Tools

After presenting building blocks and state-of-the-art neural networks for computer vision
tasks, this section will present the lifecycle of AI. Additionally, programming frameworks
for creating and training NNs will be evaluated. Lastly, existing End-To-End Artificial
Intelligence platforms that cover the AI lifecycle are compared.

4.1. The Artificial Intelligence Lifecycle

Creating AI involves different steps. Figure 4.1 displays a high-level ML/AI lifecycle.
As explained in Section 2.5, data is essential for the performance of AI models. Thereby,
the lifecycle begins with data collection and preprocessing. This results in a dataset that
can be used for model training. Model training is about choosing and training an AI
architecture, which is then evaluated to determine whether the model meets the desired
results. In the final steps, the trained model is served for users to make predictions or
inferences on data [SFH21].

Data
collection

Data
preprocessing

Model
training

Model
evaluation

Model
serving

Prediction &

Inference

Figure 4.1.: A high-level Machine Learning/Artificial Intelligence lifecycle. It starts with
the collection and preprocessing of data. Afterward, a fitting AI model has
to be trained and evaluated. If a good performing model is found, it is served
on which prediction and inference can be done. (Adopted from [SFH21].)

These steps require specific hardware and software tools. Datasets need to be easily
usable and modifiable. Besides much storage, software is needed to manage the datasets
with an easy-to-use interface. AI models can be created by writing code in a program-
ming language that describes the model architecture, training, and evaluation workflow.
This requires libraries that ease this process. Training a model needs specialized hard-
ware and software to allow efficient training and orchestration between multiple servers.
A general introduction to the specialized hardware and software is given in Section 4.2.

36

4.2. Choosing a Deep Learning Framework

Finally, model serving makes the trained model available to users for predictions and
inference on data. As different users can interact with these models, features like pri-
vacy, access control, auditability, logging, and monitoring are key aspects that need to
be considered [SFH21].

In software development, ”DevOps” is a common term for describing the continuous pro-
cess of developing and operating software [EGHS16, AAK17]. It includes all stages of the
general software development cycle: planning, requirement analysis, design, implemen-
tation, testing and integration, and maintenance. DevOps tries to maximize the automa-
tion of this lifecycle with software tools to improve the transitions between the different
phases and ease communication between teams and customers. Methods like Continuous
Integration (CI) and Continuous Delivery (CD) are commonly used [EGHS16, AAK17].
These concepts can also be transferred to the ML lifecycle. Machine Learning Opera-
tions (MLOps) is about automating the processes of dataset creation, model training,
and model serving, providing methods and software tools to ensure continuous develop-
ment and integration of ML models [SFH21]. The following sections present popular DL
frameworks that allow the creation and training of AI models. Then, different software
tools are compared that enable MLOps to form an end-to-end AI platform.

4.2. Choosing a Deep Learning Framework

With the emerging adoption of AI in industries, the development of frameworks to create
and train AI models has also increased rapidly. Training deep learning models is very
compute intensive, considering their use of many different layers and the vast amount
of data to process. As explained in Section 2.6, the core of computations are matrix
operations. CPUs are not optimized for these operations and can not process this much
data with high throughput. Over the years, the training process shifted to GPUs. GPUs
are fundamentally used for graphics processing and are highly optimized for integer and
floating-point operations. They have to perform fewer instructions in a very short time
for a lot of data, e.g., a shader program needs to be applied to every pixel on the screen
thirty times a second. These processing tasks can be heavily parallelized. Thereby,
GPUs have a lot more cores compared to CPUs.

In 2007, NVIDIA released the CUDA programming model to write and run highly
parallelized programs directly on the GPU on so-called CUDA cores [GLGN+08, IZG18,
HZJM22]. Modern GPUs can have thousands of those cores. In recent years, Tensor
cores were added, which are highly optimized for general matrix operations [HZJM22].
CUDA and Tensor cores increased the training speed of AI models immensely [ASP17,
BD18, HZJM22].

October 12, 2023 37

4. The Artificial Intelligence Lifecycle and Software Tools

4.2.1. Popularity of Different Deep Learning Frameworks

Many deep learning frameworks are developed to utilize GPUs’ parallelization capabil-
ities. Those frameworks ease the process of building and training AI models by using
high-level abstraction. To determine the most relevant frameworks, multiple sources
were analyzed. Nguyen et al. [NDB+19] found TensorFlow [AAB+15, Dev23b], Keras
[C+15], Microsoft CNTK [Mic23], Caffe [JSD+14], Caffe2 [Caf23], Torch [CKF11], Py-
Torch [PGM+19], MXNet [CLL+15], Theano [TAA+16], and Chainer [TOA+19] being
the most popular deep learning frameworks in 2019. As of 2023, Caffe2 was merged into
PyTorch [Tea18]. The development of Microsoft CNTK was stopped in August 2022
[ale22]. Torch and Theano are not under active development anymore [Tor23a, MIL17].
The Chainer project’s development was stopped as the cooperation behind the frame-
work migrated to PyTorch [Pre19].

”Papers with Code” is a website where statistics about ML papers are collected [Pap23a].
One statistic is the percentage of frameworks used in papers that open sourced their
code. Figure 4.2 displays the share of frameworks used relative to the number of papers
published in that time over the last five years. PaddlePaddle [Pad23], JAX [BFH+18],
and MindSpore [Min23] are frameworks that were not mentioned by Nguyen et al. .
PaddlePaddle and JAX were rarely used during the entire timespan. MindSpore is a
relatively new DL framework that went open source in 2020 and seems to gather interest
in the research community at the beginning of 2022. PyTorch steadily increased its share
over the years, with over 50% of the papers using this framework in the last two years.
TensorFlow was used a lot in 2018. Since then, it has been on a constant downward path
and has been used in less than 5% of papers in 2022 and 2023. Keras is not explicitly
mentioned. This could be because TensorFlow uses Keras as a high-level API [Ker23].
Thereby, open source code that utilizes Keras is classified as TensorFlow.

2018-08-07 2019-04-14 2019-12-20 2020-08-26 2021-05-03 2022-01-08 2022-09-15 2023-05-23
0

20

40

60

80

100

S
ha

re
 o

f i
m

pl
em

en
ta

tio
n

in
 % Caffe 2

PaddlePaddle
JAX
MXNet
MindSpore
PyTorch
TensorFlow
Other
Torch

Figure 4.2.: Proportions of frameworks used in paper with published open source code
collected by Papers with Code in the last five years [Pap23b].

38 Jannes Neemann

4.2. Choosing a Deep Learning Framework

Analyzing the worldwide Google search trends, displayed in Figure 4.3, shows a similar
result. The search popularity of PyTorch increased in recent years while TensorFlow
shrunk. Keras is listed here, as this data captures the raw search topics users entered.
On the first of January 2022, Google adjusted its data collection system, which resulted
in a visible spike in search popularity. The combined search popularity of Keras and
TensorFlow is greater than PyTorch’s.

2018-07-15 2019-06-30 2020-06-14 2021-05-30 2022-05-15 2023-04-30
0

20

40

60

80

100

R
el

at
iv

e
se

ar
ch

 p
op

ul
ar

ity
 in

 % TensorFlow
PyTorch
Keras
Caffe
MXNet

Figure 4.3.: Worldwide Google Search Trend results for TensorFlow, PyTorch, Keras,
Caffe, and MXNet from the last five years [Goo23]. The values are relative
to the highest value in the time span. On the first of January 2022, Google
adjusted its data collection system, which resulted in a visible spike in search
popularity.

Finally, it can be said that TensorFlow (Keras) and PyTorch are the most popular DL
frameworks in research and industry [DPS+21]. Generally, PyTorch is preferred over
TensorFlow in academia [DPS+21]. In the following, the differences between these two
frameworks will be presented.

4.2.2. PyTorch vs. TensorFlow

PyTorch was released by Facebook in 2016 and is based on the ideas of Torch [PGM+19].
TensorFlow was released in 2015 and is developed by Google [AAB+15]. Fundamentally,
both use a data flow graph to describe computation (computational graph). In the case
of TensorFlow, a static computational graph is used. It assumes the input data is always
the same, and the graph can be reused. This allows for applying graph optimization,
increasing the computation performance [PGM+19, DPS+21]. Paszke et al. [PGM+19]
say that a static graph reduces the ease of use, debugging, and flexibility of usable
computation types. PyTorch follows the principle of dynamic eager execution [PGM+19].
It uses a dynamic graph, as operations are executed immediately as they are called in

October 12, 2023 39

4. The Artificial Intelligence Lifecycle and Software Tools

the code. This makes debugging a lot easier, as the execution is much closer to the
actual code written. In 2017, Google announced integrating eager dynamic execution
in TensorFlow [Eag17] and switched completely to eager execution with the release of
TensorFlow 2 and the integration of Keras in 2019 [Ten23].

Considering the performance between TensorFlow without eager execution and PyTorch,
Dai et al. [DPS+21] compared multiple DL models and found that TensorFlow is on
average 8% faster on CNN-based networks. Novac et al. [NCN+22] used TensorFlow
2 with eager execution and found PyTorch to need 25% less time on their CNN-based
methods. Those tests were run on old GPUs (Tesla P100 and GeForce GTX 1070 were
released in 2016). Benchmarks on newer GPUs with Tensor Cores are needed to properly
evaluate both frameworks’ performance.

PyTorch
import torch
class ClassificationModel(torch.nn.Module):

def __init__(self):
super().__init__()
self.model = torch.nn.Sequential(

torch.nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels=32, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.ReLU(),
torch.nn.Flatten(),
torch.nn.Linear(in_features=12800, out_features=64),
torch.nn.ReLU(),
torch.nn.Linear(in_features=64, out_features=10),

)

def forward(self, x):
logits = self.model(x)
return logits

model = ClassificationModel()

TensorFlow
import tensorflow as tf

model = tf.keras.models.Sequential(
tf.keras.layers.Conv2D(filters=32, activation="relu",kernel_size=(5, 5), stride=(1, 1),

input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(filters=32, activation="relu", kernel_size=(5, 5), stride=(1, 1)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(units=64, activation="relu"),
tf.keras.layers.Dense(units=10, activation="relu"),

)

Listing 1: Definition of neural network architecture in PyTorch and in Tensorflow 2.

Both PyTorch and TensorFlow are written in C++. To offer an easier-to-use API for
programmers, the functionalities are wrapped in Python. Internally, Python calls the
C++ API to keep the performance of the functions. Listing 1 shows the creation of a

40 Jannes Neemann

4.2. Choosing a Deep Learning Framework

NN architecture in PyTorch and TensorFlow 2 (Keras) with the mentioned Python API.
A combination of two convolutional layers and two linear layers is used. TensorFlow and
PyTorch create layers by creating instances of the corresponding class and adding them
in the correct order to a list (Sequential instance). The order in which they are added
determines the data flow through the layers. The main difference is that PyTorch uses an
extra class to wrap the model and override the forward method, which defines how the
model should process the data. In TensorFlow, the data processing is defined through
the layer structure. Additionally, the name of the activation function is passed as an
argument and does not have to be explicitly initialized like in PyTorch.

Comparing the training of both models, TensorFlow automates much of this process.
As displayed in Listing 2, TensorFlow has the compile and fit methods, which prepare
the model for training and runs the training. Essentially, it wraps everything that has to
be defined in PyTorch explicitly. TensorFlow has built-in metrics calculation, which can
be specified in the compile method. In PyTorch, those metrics must be implemented
by hand or external libraries like TorchMetrics [Wel23] have to be used.

PyTorch
training_loader = torch.utils.data.DataLoader(training_set, batch_size=128, shuffle=True)
validation_loader = torch.utils.data.DataLoader(validation_set, batch_size=128, shuffle=False)

loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

for epoch in epochs:
for data in training_data:

inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()

TensorFlow
optimizer = keras.optimizers.Adam(learning_rate=0.001, momentum=0.9)
model.compile(

loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']
)
model.fit(

x_train, y_train, epochs=50, batch_size=128 ,validation_data=(x_val, y_val)
)

Listing 2: Training of neural network model in PyTorch and in TensorFlow.

TensorFlow offers an easy-to-use API for creating and training NN models compared to
PyTorch. As it does a lot of the work internally, fewer errors can occur when writing
the code. On the other hand, this makes debugging harder, as the exceptions occur
somewhere in the internal code of TensorFlow. PyTorch code is easier to debug, as the

October 12, 2023 41

4. The Artificial Intelligence Lifecycle and Software Tools

essential instructions for creating and training the model are in the file. Thereby, excep-
tions are easier to track down. Section 4.2.1 showed that PyTorch is more often used in
research. As ”PathoLearn” is primarily used by medical students and professionals, it
makes sense to use the framework, which is most used in research, to familiarise them
with it.

Lightning To Reduce Boilerplate

As shown, PyTorch uses a lot of boilerplate code to create and train a NN. Lightning
[FT19] is a framework built on top of PyTorch, which tries to reduce this by wrapping
PyTorch with custom classes and methods. Listing 3 displays the training workflow
with Lightning of the same PyTorch model as presented in Listing 1 and 2. Everything
is wrapped inside a LightningModule, where the PyTorch model is initialized in the
constructor. Methods like training_step and validation_step are overridden to de-
fine step-specific statements, like calculating the model output, the loss, and metrics.
Explicitly calling the backpropagation or optimizer step is not needed anymore, as the
overridden methods hook between those steps internally. Another optimization is us-
ing a Trainer object, which is comparable to TensorFlow’s compile and fit methods.
Training-specific parameters like the number of epochs can be passed directly to the
trainer, removing the need to program the training loop explicitly. The deep integration
of TorchMetrics allows for easy metrics calculation and logging. The accuracy is calcu-
lated as displayed in Listing 3 for each training and validation step. Additionally, those
metrics can be logged to a defined logger (in this case, a CSV file) for each epoch, step,
or both.

Finally, the Lightning framework focuses the code writing on the necessary elements to
train and evaluate a NN. This is comparable to TensorFlow, but Lightning keeps the
flexibility and control of the model training of PyTorch. This results in readable code,
allowing readers to understand the NN model configuration easily and quickly identify
the impact of code changes. Wrapping PyTorch with custom functionality poses the risk
of reducing training performance. Depending on the configuration, Lightning is tenths
to hundreds of milliseconds slower per epoch than PyTorch [Ben23, FT19]. Considering
the offered flexibility and integration of, e.g., more straightforward metric calculation,
aggregation, and logging, this seems to be an acceptable tradeoff.

42 Jannes Neemann

4.2. Choosing a Deep Learning Framework

import lightning as L
import torch.nn.functional as F
import torchmetrics
from lightning.pytorch.loggers import CSVLogger
from lightning.pytorch import Trainer

Initialize datasets and ClassificationModel Class

class LightningModel(L.LightningModule):
def __init__(self):

super().__init__()
self.model = ClassificationModel()
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
self.valid_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)

def _shared_step(self, batch, batch_idx):
input, label = batch
logits = self.model(input)
loss = F.cross_entropy(logits, label)
return loss, logits, label

def training_step(self, batch, batch_idx):
loss, logits, label = self._shared_step(batch, batch_idx)
self.train_acc(logits, label)
self.log("train_acc", self.train_acc, on_epoch=True, on_step=False)
return loss

def validation_step(self, batch, batch_idx):
loss, logits, label = self._shared_step(batch, batch_idx)
self.valid_acc(logits, label)
self.log("valid_acc", self.valid_acc, on_epoch=True, on_step=False)
return loss

def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer

model = LightningModel()
logger = CSVLogger("logs", name="log")
trainer = L.Trainer(max_epochs=10, logger=logger)
trainer.fit(model, train_loader, validation_loader)

Listing 3: Training of neural network model with Lightning [FT19].

October 12, 2023 43

4. The Artificial Intelligence Lifecycle and Software Tools

4.3. Comparison of Existing End-To-End Artificial
Intelligence Platforms

This section compares software platforms covering the entire ML lifecycle (MLOps tools).
Moreschi [MRL+23] created a map of different software tools that cover specific lifecycle
steps. As displayed in Figure 4.4 the landscape of available software solutions is large.
Considering the ML lifecycle, End-to-End Full-stack MLOps tools, OPS, and CI/CD

Figure 4.4.: Landscape of software tools grouped into their category that they solve in
the machine learning lifecycle [MRL+23].

are the most relevant categories that cover most of the lifecycle steps. Table 4.1 was
created by analyzing each listed software tool, additional research papers and reviews
[RPC+22, SNKP22, HM22, TBF+22, KKH23], and own research. PathoLearn uses only
open source software that can be self-hosted, so the MLOps tool should also fulfill these
requirements [Nee21]. This allows the flexibility to change the MLOps software to meet
special requirements and host the software on self-owned hardware. Additionally, the
previous sections resulted in the selection of PyTorch as the DL framework for training
AI models. Except for BigML [Big23] and Picsellia [Com23], every tool can cover the
lifecycle of PyTorch models. Self-hosting the tool is often a paid feature. ClearML
[Cle19] (CLE), Iterative [Dev23a] (ITE), MLflow [MLf23] (MLF), Polyaxon [Mou18]
(POL) and Ray [Pro23a] (RAY) are the only tools that are open source and offer a free
self-hosting option. Therefore, only these five tools will be compared in more detail.

44 Jannes Neemann

4.3. Comparison of Existing End-To-End Artificial Intelligence Platforms

Software Tool Reference Open Source Self-hosted PyTorch
Akira Ai [MLO23] ✘ ✘ ✔

Amazon SageMaker [Mac23b] ✘ ✘ ✔

BigML [Big23] ✘ ✔(paid) ✘

ClearML [Cle19] ✔ ✔ ✔

cnvrg.io [Ful23] ✘ ✔(paid) ✔

Dataiku [Dat23] ✘ ✔ ✔

DataRobot [Mac23a] ✘ ✔(paid) ✔

Huawei ModelArts [Mod23a] ✘ ✘ ✔

IBM Watson Studeio [Wat23] ✘ ✘ ✔

Iterative [Dev23a] ✔ ✔ ✔

Katonic MLOps Platform [Kat23] ✘ ✔(paid) ✔

Microsoft Azure Machine Learning [Azu23] ✘ ✘ ✔

MLflow [MLf23] ✔ ✔ ✔

MLReef [Col23] ✘ ✔(paid) ✔

Navio [Eas23] ✘ ✘ ✔

Picsellia [Com23] ✘ ✔(paid) ✔(pre-trained)
Polyaxon [Mou18] ✔ ✔ ✔

Ray (Anyscale) [Pro23a] ✔ ✔ ✔

Valohai [Val23] ✘ ✔(paid) ✔

Vertex AI [Ver23] ✘ ✘ ✔

Wallaroo [Wal23] ✘ ✔(paid) ✔

Table 4.1.: List of different MLOps tools. For each software tool, the reference, whether
the code is open source, can be self-hosted, and whether it supports PyTorch
is documented.

The general requirements of the MLOps platform in the context of PathoLearn must
be defined before comparing the different software tools. Recupito et al. [RPC+22] de-
scribed numerous features MLOps tools should have. These features were grouped into
the categories General Features, Data Management Features, and Model Management
Features. Based on this, the features required for the extension of PathoLearn were
created. Table 4.2 shows the list of requirements, with a description for their purpose.
Some requirements were very specific and not listed, as they are irrelevant for the ex-
tension. On the other hand, additional requirements were added, which are indicated
with a (+).

Multiple users can use the extension at the same time. Therefore, scalability is an
essential factor. The MLOps tool should offer horizontal scalability by adding more
servers with GPUs to allow the training of multiple models simultaneously. Horizontal
scalability is also relevant in data management. Instead of adding more storage to a single
server, multiple servers can increase the overall performance. Therefore, this requirement
was additionally added. This requires an easy-to-use API or Software Development Kit
(SDK) to create and fetch datasets and distribute them between the servers. Another
important feature is the metadata management and collection. When creating a dataset,

October 12, 2023 45

4. The Artificial Intelligence Lifecycle and Software Tools

metadata should be collected about it, e.g., dataset size and number of files. The
metadata of a model training should include the software packages required to run the
training or store which dataset is used. This can be extended to the model serving.
This topic was not explicitly listed by Recupito et al. [RPC+22] and therefore added, as
model serving is an important feature for the extensions. It should be scalable and offer
an easy-to-use API or SDK. This should be combined with metadata collection to collect
model performance and runtime parameters. Most of the features are used indirectly

Feature Category Feature Description

General

Open Source The software code is public and available for use, mod-
ification, and distribution.

Horizontal Scalability It should be possible to scale the software horizontally.

Self-hosting Self-hosting the software should be possible without
costing money.

Metadata management/collection Metadata management is used to collect data during the
complete ML pipeline.

Isolation/loosely coupling
Components can be developed and deployed indepen-
dently and depend on each other to the least extent
practicable.

UI
The tool should offer its own User Interface or Dash-
board. Specifically for managing the entire Machine
Learning lifecycle and visualizing metrics.

Data Management

Data storage
Either a built-in database to store raw data, experi-
ments, models, and metadata should exist or support
external storage solutions.

Horizontal Scalability (+)
Besides vertical scalability, the data storage should also
support horizontal scalability to improve the data man-
agement performance.

Metadata management/collection Metadata management is used to collect data and can be
used to determine which data is used to train a model.

API / SDK An easy-to-use API or SDK must exist to allow data
management.

Model Management

Library support It should support PyTorch / PyTorch Lightning.

Model tracking Intermediate ML model performance can be tracked and
logged to maintain reproducibility and gain insight.

Model registry
A centralized repository used to standardize the defi-
nition, storage, and access of features for training and
serving, which is accessible via an API.

Metadata management/collection Metadata management is used to record ML model, the
performance, and runtime parameters.

API / SDK An easy-to-use API or SDK must exist to create and
manage models.

Model serving (+) Model serving should be offered scalable and with an
easy-to-use API or SDK.

Table 4.2.: The required features the MLOps software tool must have to cover the fea-
tures needed for PathoLearn extensions. These are mostly based on Recupito
et al. [RPC+22]. Some features were removed as they are irrelevant to the
extension. Those marked with a (+) were added. The features description
was updated to fit the context of PathoLearn.

46 Jannes Neemann

4.3. Comparison of Existing End-To-End Artificial Intelligence Platforms

through the user interface (UI) of PathoLearn. Using the API and SDK of the MLOps
tool, abstraction layers must be created to visualize the features in the UI. To still offer
all features without adding additional abstraction layers, the MLOps tool should have
an independent UI. It should allow to monitor and manage most of the features listed.

For every of the five software tools, it was analyzed whether it supports the specific
feature defined in Table 4.2. As can be seen in Table 4.3, a ✔ indicates that the tool
supports this feature, (✔) is a partial fulfillment, and ✘ means that this feature is not
offered or it can not be freely used.

Iterative MLflow Polyaxon Ray ClearML

G
en

er
al

Open Source ✔ ✔ ✔ ✔ ✔

Horizontal Scalability (✔) ✘ ✔ ✔ ✔

Self-hosting ✔ ✔ ✔ ✔ ✔

Metadata management/collection ✔ ✔ ✔ ✔ ✔

Isolation/loosely coupling ✔ ✔ ✔ ✔ ✔

UI ✘ ✔ ✔ (✔) ✔

D
at

a
M

an
ag

em
en

t

Data storage ✔ ✔ ✔ ✔ ✔

Horizontal Scalability ✔ ✔ ✔ ✔ ✔

Metadata management/collection ✔ ✔ ✔ ✔ ✔

API / SDK (✔) (✔) ✘ ✔ ✔

M
od

el
M

an
ag

em
en

t

Library support ✔ ✔ ✔ ✔ ✔

Model tracking ✔ ✔ ✔ ✔ ✔

Model registry ✔ ✔ ✘ ✔ ✔

Metadata management/collection ✔ ✔ ✔ ✔ ✔

API / SDK ✔ ✔ ✔ ✔ ✔

Model serving ✔ (✔) ✘ ✔ ✔

Table 4.3.: Comparison of the different MLOps software tools for the predefined features.
A ✔ indicates that the tool completely fulfills the feature. (✔) means partial
fulfillment, and ✘ indicates no implementation or no free usage of this feature.

October 12, 2023 47

4. The Artificial Intelligence Lifecycle and Software Tools

Iterative offers three independent open source modules: Data Version Control (DVC)
[dvc23], Continuous Machine Learning (CML) [cml23], and MLEM [mle23]. These cover
most of the features required. DVC and CML use git-based projects [dvc23, cml23]
to enable version control for data and models. CML integrates the training into the
CI/CD solutions of GitHub, GitLab, and Bitbucket. Horizontal scalability is only given
by creating more runners to execute the CI/CD pipelines [Sel23]. A downside is that
all the features are primarily exposed through a command line application. The offered
Python SDK exposes only limited functionality. While metrics and plots can be defined
and stored in DVC, they can only be visualized through external tools. A complete UI
is available through a closed-source, non-free tool called Studio [Inc23a].

MLflow is a popular open source software that covers the ML lifecycle. A central track-
ing server collects and stores relevant information and can be visualized and managed
through the UI. To enable parallel training on a server cluster, additional software like
Apache Spark is needed [Con23a]. The Model registry stores trained models in a custom
file format. The serving of a model is realized through a RESTful API. Multiple end-
points are created for monitoring and making predictions for each served model. This
makes implementing custom UI elements in PathoLearn easy, as simple HTTP requests
can be used to get predictions for input data provided by the user. The serving im-
plementation does not explicitly consider scalability. Forwarding requests to a server
cluster is not possible. Therefore, the SDK offers the ability to deploy models to other
existing or custom model-serving software tools.

Polyaxon offers comparable functionality to the tools presented before. The UI is very
sophisticated as it allows to search and filter metadata with a custom query language
[Int12]. While the API and SDK can access many features, datasets can not be created
directly and must already exist. Metrics and metadata are tracked and stored and can
be directly visualized. Saving and deploying trained models is not possible. The model
registry is only offered in the commercial product [Pol12], and model serving requires
external tools [Ser23a].

Ray implements every feature required, loosely coupled into multiple libraries. Datasets
can be created and managed scalable with Ray Data [Ray23b]. Ray Train covers every-
thing considering training and has deep integrations with existing DL libraries, including
PyTorch and PyTorch Lightning [Ray23d]. Another advantage over the other libraries
is that scaling can be done besides Kubernetes with a custom cluster and worker nodes
[Lau23]. This allows servers to be added easily afterward. This cluster can be reused
for model serving with Ray Serve [Ray23c]. This creates a scalable way of training
and serving models simultaneously. In contrast to Polyaxon’s UI, Ray Dashboard exists
primarily only for monitoring and debugging running experiments [Ray23a].

ClearML is the only MLOps software tool that fulfills every feature requirement. Espe-
cially its UI allows efficient model management. Besides visualizing metrics and meta-
data, training processes can be cloned, stopped, and restarted. Comparable to MLflow,

48 Jannes Neemann

4.3. Comparison of Existing End-To-End Artificial Intelligence Platforms

ClearML uses a central service called ClearML Server [Cle23b], which manages met-
ric and metadata tracking, training scheduling, and data administration. Additionally,
it handles server orchestration. Like Ray, ClearML resolves horizontal scalability with
worker nodes. A ClearML Agent [Cle23a] can be installed on a server, which is auto-
matically registered at the ClearML Server instance. The ClearML server keeps track
of the present agents and distributes training jobs to them. The agent runs the train-
ing in a virtual environment, installing the needed software packages and downloading
the used dataset. Metadata and metrics are reported back to the ClearML Server in-
stance. Trained models can be stored in the model registry and used by the serving
module ClearML Serving [Ser23b]. ClearML Serving integrates NVIDIA Triton [Ser23b].
NVIDIA Triton is an open source serving software that enables scalable model serving.
Figure 4.5 displays the general architecture of the software. It supports multiple DL

Figure 4.5.: Overview of the NVIDIA Triton architecture [Tri20].

frameworks and utilizes multiple GPUs and CPUs. Additionally, status and metrics are
exported and can be accessed. As MLflow, ClearML Serving offers model predictions
with REST endpoints. The requests are forwarded to the Triton server, and the pre-
diction results are returned to the user. A downside of ClearML Serving is the missing
integration with the existing UI. Everything is managed through the CLI application,
and metrics are reported to Prometheus, which can be visualized in a Grafana dashboard
[Ser23b].

To conclude the comparison, ClearML and Ray are the most fitting MLOps software tools
for the defined requirements. After further analyzing both tools, Ray’s API offers more
complex functionality and control. While this is generally preferable, this complexity

October 12, 2023 49

4. The Artificial Intelligence Lifecycle and Software Tools

is not needed for the use-case of PathoLearn. ClearML’s API is easier to use. It offers
core functions, e.g., starting training or loading datasets, and much is happening under
the hood. As stated before, the tool should offer an extensive UI. Ray Dashboard is
primarily only for monitoring the connected servers and managing the running jobs. In
contrast to Ray, ClearML has a UI integrated that allows managing many of the ML
lifecycle steps. Therefore, ClearML is the most fitting choice. The high-level API allows
easy integration into PathoLearn, and the UI enables additional management options
without the need to access the API. The following section presents the inner workings
of ClearML in more detail.

4.3.1. ClearML

The core entities of ClearML are Projects, Tasks, and Models. A Project acts as a
container for Tasks and Models to group them and create a logical structure [Pro23c].
Projects can be nested, resembling the hierarchical structure of a file system. A Task
is generally everything that can be executed in some way on the server, e.g., a Python
script, or storing data (artifacts), e.g., a trained model [Tas23]. Trained models are
directly stored in a Model entity. Tasks and Models can be independently accessed
through the UI or the SDK.

A feature of ClearML is the automatic analysis of the executed Python script. Listing 4
enables this feature by creating a new Task named MyTask inside the Project MyProject.
The script code is stored in the Task in ClearML. Additionally, the imports are analyzed
to define the libraries needed to run the script code. After starting the Python script,
the used Python version is detected and stored in the Task. The Task is registered to be
executed remotely (task.execute_remotely(...)) to facilitate the offered horizontal
scalability through the ClearML Agent library. The Task is enqueued on the ClearML
Server and fetched by an agent instance for execution. The Agent creates a new virtual
environment, where the required packages stored in the Task will be installed, and the
script code will be started. This creates a reproducible runtime environment for each
Task, independent of the hardware and software installed on the Agent host.

from clearml import Task

Initialize a new ClearML Task
task = Task.init(project_name="MyProject", task_name="MyTask")

Run the script on a ClearML Agent instance
task.execute_remotely(queue_name="default", clone=False, exit_process=True)

Remaining script

Listing 4: Example code for initializing and marking a ClearML Task for remote execu-
tion.

50 Jannes Neemann

4.3. Comparison of Existing End-To-End Artificial Intelligence Platforms

Considering the training process of NN architectures, visualizing and storing metrics is
an important step in evaluating the network’s performance. The ClearML Logger class
[Log23] handles the reporting of metrics calculated in the script code to the Task. Like
the automatic analysis of the Python script, it also identifies the metrics calculated in
the code. This integrates with the metric logging functionality available in Lightning.
Listing 3 displays how to log metrics with the self.log() method. As displayed in
Figure 4.6, ClearML catches these method calls and stores the calculated metrics in the
Task, which are visualized in the UI.

Figure 4.6.: Metrics of a neural network training visualized in the UI of ClearML.

The ClearML Data library creates, manages, and versions reusable datasets. A dataset
is created in Listing 5. A ClearML Dataset instance is a special form of Task. Therefore,
they can be grouped into Projects. Local files can be added to the dataset and uploaded.
The internal structure of the uploaded folder will thereby be preserved. To identify that
no more changes will be made to this version, the dataset must be marked as final.

As displayed in Figure 4.7 the uploaded dataset can be visualized in UI. Each dataset
is identified by a unique string, enabling ClearML Agent instances to easily get a local
copy for training through the provided SDK.

ClearML supports different scalable storage solutions to enable horizontal scalability
[Sto23], e.g., Amazon S3 [Ama23], Google Cloud Storage [Clo23], and MinIO [Inc23b].

October 12, 2023 51

4. The Artificial Intelligence Lifecycle and Software Tools

Unlike a hierarchical file system, these storage solutions use the ”object storage” method.
Each element saved is considered an object and does not have to follow a hierarchy but
is stored on the same layer. In combination with a unique identifier, stored objects can
be accessed easily and distributed between multiple servers, as no hierarchy has to be
kept in sync between the servers. As shown in the previous Listing 5, a URI is defined
where the dataset’s data should be uploaded. In this case, to a storage that supports
the Amazon S3 protocol. The ClearML server can also be configured to use the storage
solution for everything that should be stored.

from clearml import Dataset

dataset = Dataset.create(dataset_name="MNIST", dataset_project="Datasets",
description="Handwritten digits", dataset_tags=["Classification"], output_uri="s3://...")

Add local folder to the dataset
dataset.add_files(folder_path)
Upload the folder to the configured output url
dataset.upload()
Mark the dataset as final
dataset.finalize()

Listing 5: Example code for creating a ClearML Dataset instance.

Figure 4.7.: A ClearML Dataset visualized in the UI.

52 Jannes Neemann

4.4. Software Tools for Teaching Artificial Intelligence

4.4. Software Tools for Teaching Artificial Intelligence

AI/ML also plays an important role in education. As AI becomes more present in every
field, teaching students the foundational concepts becomes necessary to prepare them
for their later workspace [GHPBB21]. As explained in the previous sections, creating
AI models requires using a text-based programming language (e.g., Python). There-
fore, students must not only understand the concepts of AI but also know the syntax
and concepts of the specific programming language. This creates a significant bound-
ary to teach and learn ML concepts effectively. To mitigate the additional boundary,
visual programming languages are often used [GHPBB21]. The textual concepts of the
programming languages are converted into visual elements, which can be dragged and
dropped onto a canvas. Connections between those elements realize the execution flow.
It has been shown that visual programming can support students in understanding the
topic and especially focusing them on the specific problem, e.g., understanding how ML
works, removing the necessity to understand the programming language used internally
[GHPBB21, HCS21].

Gresse von Wangenheim et al. [GHPBB21] reviewed different visual tools for teaching
ML. Figure 4.8 displays some examples. Generally, those tools use a combination of
connected nodes to create an AI model. Different types of visual programming paradigms
can be defined: LearningML [Lea23] uses a block-based approach, where blocks are
connected, and the parameters are adjusted directly inside these blocks. Orange [Lju23]
uses a Data flow-based approach, which offers much more customization, as nodes can be
connected to (multiple) other nodes. In workflow-based visual programming, the nodes
describe the workflow of training ML. Google Teachable Machine [Tea23] uses nodes to
create the labels and training data in a dataset. Another node starts the training, and
hyperparameters can be adjusted. In the last node, predictions can be made.

The analyzed tools offer different types of abstraction. Some allow configuration of the
ML process, while others focus on quick results (see Google Teachable Machine Fig-
ure 4.8c). Gresse von Wangenheim et al. [GHPBB21] found that most of the tools are
integrated into popular block-based languages like Scratch [MRR+10] or Snap! [Mön23].
While these tools offer easy-to-train ML models, they mostly do not support collabo-
rative teamwork or sharing the result with others [GHPBB21]. Also, integrating these
tools into different frameworks, like PyTorch, is often not directly possible.

Finally, it can be said that many different tools exist that make teaching and learning
ML more accessible. Visual programming is a viable approach to abstract text-based
programming into a form where only the knowledge to solve the problem is needed. The
visual programming language can thereby offer different levels of complexity. A node
can represent a high-level concept of ML, e.g., a classification node. The user only needs
to understand that this node represents an ML model that can classify images. What
kind of classification model is used is not presented to the user. Alternatively, a node

October 12, 2023 53

4. The Artificial Intelligence Lifecycle and Software Tools

(a) Block-based (LearningML) [Lea23] (b) Data flow-based (Orange) [Lju23]

(c) Workflow-based (Google Teachable Machine) [Tea23]

Figure 4.8.: Different visual programming examples for teaching ML found by Gresse
von Wangenheim et al. [GHPBB21]. LearningML (a) uses a block-based
language, where blocks are connected, and adjustments are made directly
inside the blocks. Orange (b) lets the user connect different nodes. The
nodes describe the data flow from the datasets through training and evalua-
tion. Lastly, Google Teachable Machine (c) uses a workflow-based approach.

54 Jannes Neemann

4.4. Software Tools for Teaching Artificial Intelligence

can be a single convolutional layer where the user can configure every parameter, e.g.,
kernel size, stride, and padding. Looking at the different paradigms, a data flow-based or
workflow-based visual programming language is closest to the actual behavior of training
a NN. The training data passes through every layer until the output layer, where the
predictions are evaluated. This allows users to understand the inner workings of neural
networks while still being offered a high-level abstraction from text-based programming.

October 12, 2023 55

5. Requirements

Besides selecting a programming language and MLOps software tool for creating and
training ML models, additional requirements specific to the extension of PathoLearn
can be defined. The design and development of PathoLearn was based on a detailed
requirements analysis [Nee21]. Initially, the stakeholders and target groups were defined.
Then, the concrete requirements were documented in the form of user stories. The
following sections present the updated stakeholders, target groups, and the extension’s
requirements.

5.1. Stakeholders and Target Groups

PathoLearn is used as an additional education tool in the lecture on digital pathology
at the Hannover Medical School (MHH). Therefore, the stakeholders are generally the
teachers and students of that course. Additionally, the extension can be used by re-
searchers to develop AI. While the students learn about digital pathology, AI is not
included in their curriculum. Thereby, as displayed in Table 5.1, it can be deduced that
the extension must be easy to use and understandable, besides being complex enough
to support researchers in their AI research.

Characteristic Description
Number of participants unlimited
Geographical distribution Germany
Age at least early adults
Gender any
Educational Degree lowest: qualification for university, highest: professor

Prior knowledge Existence in the field of Pathology. Knowledge about
AI is limited or not available.

Learning motivation Ex- and Intrinsic. Related to AI, more intrinsic for re-
searchers and teachers while more extrinsic for students.

Learning duration different, depending on prior knowledge
Media competence common computer and browser skills
Learning places In the university, at home, in the lecture, etc.
Technical equipment A computer or laptop with a modern browser (internet)

Table 5.1.: Characteristics of the target group. Per [Ker18].

56

5.2. User Stories

5.2. User Stories

A user story (US) is an efficient way to document the requirements of the different
stakeholders. This will capture the functionalities the extension must offer without
specifying technical details. The format of the USs will be the same as used in Neemann
[Nee21]:

As <a user role>, I want <to perform this action> so that <I can accomplish this goal>.

Table 5.2 displays the collected USs. Three different user roles can be defined: a general
user, student or lecturer, or researcher. The general user captures all USs that all user
roles require. Student or lecture capture USs specific for education and the researcher
user role defines USs for research specific requirements.

As a User
Dataset Management

US-1 . . . I want to upload my own datasets so that I can use them for training.

US-2 . . . I want to create datasets from existing tasks inside PathoLearn so that I can use
them for training.

US-3 . . . I want to delete datasets so that they can not be used for training anymore.

US-4 . . . I want to see metadata about the dataset so that I can identify what kind of
dataset it is.

US-5 . . . I want to see example images of the dataset so that I can get an idea about the
dataset’s data.

Project Management
US-6 . . . I want to create projects so that I can group experiments.

US-7 . . . I want to update projects so that I can update misspellings in their name or
description.

US-8 . . . I want to delete projects so that I can neither access the project nor the containing
experiments anymore.

Experiment Management

US-9 . . . I want to create experiments so that I can organize my different artificial intelli-
gence architectures.

US-10 . . . I want to delete experiments so that I can remove my artificial intelligence archi-
tectures and training results.

US-11 . . . I want to update experiments so that I can fix misspellings in their name and
description.

Artificial Intelligence Management

US-12 . . . I want to create artificial intelligence architectures so that I can train a model on
my dataset.

US-13 . . . I want to create artificial intelligence architectures with other users simultaneously
so that I can work in a group.

US-14 . . . I want to update my artificial intelligence architectures so that I can adjust specific
elements.

US-15 . . . I want to delete my artificial intelligence architectures so that neither I nor other
users can access them.

October 12, 2023 57

5. Requirements

US-16 . . . I want to get information about the current training status so that I know if my
model is working properly.

US-17 . . . I want to get information about the generated metrics so that I can identify if my
model is performing as desired.

US-18 . . . I want to perform predictions on my trained model so that I can see how good
my model’s predictions are.

As a student or lecturer
Artificial Intelligence Management

US-19 . . . I want to use predefined artificial intelligence architectures so that I only have to
provide a dataset.

As a researcher
Artificial Intelligence Management

US-20 . . . I want to create artificial intelligence architectures with a lot of customizability
so that I can adjust them to my research requirements.

Table 5.2.: Collected user stories grouped by user role and epic.

5.3. Functional Requirements

From USs, functional requirements can be extracted. The epics Dataset Management,
Project Management, and Experiment Management are primarily for organizing the AI
models that the users create. Therefore, basic create, read, update, and delete (CRUD)
operations must be offered. More complex requirements result from the Artificial Intel-
ligence Management USs.

As shown in Section 4.4, data flow-based visual programming is a good way to abstract
from text-based programming in Python. This creates a fitting abstraction, as the target
group has no or limited experience in programming (see Section 5.1). The results from
Section 4.2 and Section 4.3 create additional requirements. As displayed in Figure 5.1,
a visual programming editor must exist in PathoLearn (US-12, US-14, US-15, US-19,
US-20). A PyTorch script is generated from the connected nodes and transferred to
ClearML for training. While training the model, the status and calculated metrics
should be continuously returned to PathoLearn for visualization (US-16, US-17, US-18).

generate
Visual

programming
editor

PathoLearn

transferPyTorch script

status & metrics

Execute script &
train model

ClearML

Figure 5.1.: General flow between the visual programming editor and the training.

58 Jannes Neemann

5.4. Non-Functional Requirements

Considering US-13, the visual programming editor needs user collaboration integrated.
The result of Section 4.4 showed that this feature is not included in existing visual
programming editors created for teaching ML. Figure 5.2 shows two schematic nodes
which could exist in a visual programming editor. Users connected to the same editor
instance in PathoLearn should always see the same state. Therefore, all interactable
elements, like the configuration elements of the node, must be synchronized between
every user. Creating, deleting, or moving a node should also be visible to every user
simultaneously. Finally, if a user deletes or creates a node connection, every other user
should receive a state update.

Node Node

Param Param

ParamParam

Figure 5.2.: Two connected schematic nodes of a visual programming editor. The nodes
can contain different control elements, e.g., input fields or dropdowns, which
allow configuration of the specific nodes.

5.4. Non-Functional Requirements

Neemann [Nee21] also defined non-functional requirements that PathoLearn should ful-
fill. As displayed in Table 5.3, these are also valid for the extension with additional
requirements for the collaboration feature.

NF-4 defines an average response time of 150 ms. This is based on the time specified in
the original non-functional requirements of PathoLearn [Nee21]. Miller [Mil68] stated
that if the response time of a system is up to 100 ms, the user thinks that his actions
result in an instantaneous reaction of the system. In the case of US-13, this can be
extended. Every other user that is connected to the visual programming editor should
also receive the action in up to 100 ms. This ensures that changes made to the nodes
and connections in the editor are synchronized between every user, allowing collaborative
working. Users generally have no knowledge about AI (see Table 5.1), so a focus should
be on NF-7 and NF-8. The visual programming editor must be easy to use and the
nodes available easy to understand.

Security

October 12, 2023 59

5. Requirements

NF-1 Users that are not registered have no access to the extension of PathoLearn.
Availability

NF-2 If software components of the extension fail, they should be restarted in a
few minutes.

NF-3 Software components should be horizontally scalable. Especially those com-
ponents responsible for training

Performance
NF-4 The average response time should not be over 150 ms.
NF-5 The average response of collaboration features should be less than 100 ms.
NF-6 The extension should be reactive at every time.

Usability
NF-7 The extension should be easy to use.

NF-8 The extension features should be easily understandable and fast to learn by
users.

Table 5.3.: Non-functional requirements of the PathoLearn extension.

60 Jannes Neemann

6. Implementation

This chapter covers the implementation of Patholearns’ extension. First, the overall
software architecture is presented, followed by explaining how authentication between
the various software components is realized. The last part explains how NNs can be
created, trained and served inside a collaborative visual programming editor.

6.1. General Software Architecture

The software architecture of PathoLearn can be divided into multiple (micro)services.
As illustrated in Figure 6.1, six different services and a web frontend exist. Those with
a light gray background were implemented to realize PathoLearns’ extension. Both the
Learn and Slide service, combined with most of the web frontend, was implemented in
the bachelor thesis [Nee21]. The Learn service is responsible for all features related to
teaching and learning digital pathology. The WSI that are uploaded are processed and
stored in the Slide service. Both services offer a RESTful API, which the web frontend
can use. Both backend services were implemented in Python and utilize the framework
FastAPI [Fas23] for creating the APIs.

The remaining services were created based on the requirements defined in Chapter 5 and
the results from Section 4.3. The ClearML service consists of the different introduced
sub-services ClearML Server, ClearML Serving, and ClearML Agent (see Section 4.3.1).
The AI service is used as a middleman between the ClearML REST-API and the web
frontend. It stores and manages everything related to the AI lifecycle. Specifically, it
is the backbone of the visual programming editor (see Section 6.3.1), offering different
REST endpoints based on FastAPI. Additionally, the Socket service enables real-time
collaboration with multiple users, which is explained in more detail in Section 6.3.3.

The numerous different services require proper authentication. The Auth service is a
central authentication point for every service. It handles the login and register of users
and verifies user sessions sent from the web frontend to one of the introduced services.

Lastly, the original implementation of PathoLearn utilizes Docker. Docker allows pack-
aging software programs into containers containing every software requirement, includ-
ing operating system libraries to run the program. Unlike virtual machines, the docker

61

6. Implementation

containers use the server kernel through the docker engine [Nee21]. Therefore, docker
containers are lightweight, as the hardware is not virtualized. This makes it possible to
deploy the containers on any system that supports the docker engine. Additionally, tools
like Docker Swarm [Swa23] and Kubernetes [Pro23b] allow easy scalability of containers
on multiple servers. Thereby, the new services are also packaged into docker containers.

Learn
API

Slide
API

Slide
Worker

Web
Frontend

Auth
API

AI
Service

AI�Train
Worker

AI�Beat
Worker

AI�Dataset
Worker

AI�DB
Learn-DB

Slide-DB

WSI

Supertokens
Service

Auth-DB

Socket

Learn Service

REST

REST

Slide Service

AI Service

REST
Auth Service

REST

WS

Socket Service

ClearMLREST

ClearML Service

API Gateway

Browser

Figure 6.1.: Microservice architecture of PathoLearn. The services with light gray back-
grounds were added during the development of Patholearns’ extension. The
ClearML service consists of multiple different ClearML services. For easier
readability, those were combined into one.

6.2. Centralized Authentication

As shown in the previous section, PathoLearn was extended with additional services.
In the original implementation of PathoLearn, the authentication was implemented in
the Learn service [Nee21]. It secured the application using JSON Web Tokens (JWT)
[JBS15]. A User would receive a JWT token after a successful login, which it sends
along with every HTTP request he made to the REST API. The service would then
validate the JWT and check the authorization. While this is a simple way to enable
user authentication, it is integrated into the specific REST endpoints of the Learn ser-
vice. Every other service would have to make authentication requests through this API,

62 Jannes Neemann

6.2. Centralized Authentication

creating an additional load on the service. Each service could integrate the same au-
thentication with a shared database. While this would simplify the implementation, it
would decrease the software’s maintainability. Therefore, following the concept of mi-
croservice architectures, that a service should only realize a specific business function or
requirement [AAE16], the Auth service was added for centralized authentication.

There are many open source authentication systems available (e.g., Ory [Ory23] or Key-
Cloak [Key23]). These systems are also called identity and access management (IAM)
tools. OAuth 2.0, OpenID, and SAML are common IAM protocols. With these proto-
cols, the user does not have to log in to every service it uses. A single authentication at
the IAM system creates a session that can be reused for every application connected with
the IAM. External Accounts, e.g., a Google account, can also be used. These features
often result in complex setup and configuration of the IAM tool. Users of PathoLearn
should create accounts with the offered registration and not use any external accounts.
Therefore, only a simple IAM tool is needed.

SuperTokens [Sup23] is another open source authentication tool. Compared to the other
existing ones, it is simpler to set up and easier to configure. It comprises three com-
ponents: a frontend SDK, a backend SDK and SuperTokens Core (STC). The frontend
SDK offers functions for the authentication workflow, e.g., login, register, and logout.
The backend SDK integrates into FastAPI, automatically creating endpoints for the au-
thentication workflow steps. The backend SDK communicates with the STC service,
which checks if the credentials provided by the user are correct and creates or revokes
sessions.

Figure 6.2 illustrates the steps involved in the sign-in process. The user enters his e- mail
and password. The frontend sends a POST request with the credentials to the specific
endpoint (/auth/signin) of the Auth API. It validates the input, and the backend SDK
sends the request to the STC instance. It checks if the provided credentials are valid
and returns the corresponding user ID stored in the user database. If the user exists,
the SDK initializes a new session and requests an access and refresh token from STC.
The Auth API returns the tokens, and the frontend sets these tokens as cookies. Due
to security reasons, the access token has only a limited lifetime. If the access token
validity expires, the refresh token is used to request a new pair of access and refresh
tokens without the user needing to sign in again.

This protects unauthorized users from accessing PathoLearn through the front end. To
further improve security, the REST endpoints of the different services must also be
protected. FastAPI allows adding functions to endpoints (middleware) [Mid23]. These
are executed before the actual endpoint function is called. Listing 6 displays how the
verify_session middleware can be used to protect FastAPI endpoints. The middleware
checks whether the cookies sent with the request contain a valid access token by accessing
the Auth service. If it is invalid, a status code 401 is returned, and the endpoint function

October 12, 2023 63

6. Implementation

is not executed. Otherwise, the endpoint function is run and can access a session object
containing session information (e.g., user ID and tokens).

Frontend

set cookies

Auth API

validate
input

SuperTokens
Core

enter
email & password

send sign in request

sign in request

return user id

create new session

return access and
refresh tokensend access and

refresh token

Auth Database

query user

return user if exists

store session

return user

Figure 6.2.: Sequence diagram of the sign in process of a user.

The frontend SDK and the middleware used by every service enable the required central-
ized authentication. A downside of this approach is that service-specific user information
needs to be stored in the respective service. The information must be connected to the
user instance of the authentication service. This can be realized through the available
session information, as presented in Listing 6, extracting the user ID and storing it with
the additional information in its own database.

from supertokens_python.recipe.session.framework.fastapi import verify_session
from supertokens_python.recipe.session import SessionContainer
from fastapi import Depends

@app.post('/train')
async def train_model(session: SessionContainer = Depends(verify_session())):

user_id = session.get_user_id()
Remaining code

Listing 6: A FastAPI endpoint protected by the verify_session middleware, which
enforces valid SuperTokens cookies to be sent with the request.

64 Jannes Neemann

6.3. Creating Neural Network Architectures

6.3. Creating Neural Network Architectures

After users successfully sign in, they can create NN architectures with a visual program-
ming editor. As required by The USs regarding the Project and Experiment Management,
users can create, update and delete projects. Inside a project, they can create, update
and delete experiments (see Section A.2). The projects and experiments are not user-
specific and can be viewed and modified by every other user. An experiment represents
a neural network architecture. How users can create these architectures inside a visual
programming editor collaboratively will be explained in the following sections.

6.3.1. Visual Programming Editor

As presented in Section 4.4, a visual programming editor is a fitting way to remove
the boundary of knowing the syntax of text-based programming languages. Rete.js
[Ret23] is a JavaScript framework for creating node-based editors. Custom nodes can
be created to fit the requirements of the visual programming language. As displayed in
Figure 6.3 different nodes are used to visually program a chatbot that returns a message
depending on the user’s input. Each node can have multiple sockets, which are used
to create connections between nodes. Only sockets of the same type can be connected
(e.g., only an action with an action or text with text).

Figure 6.3.: A very simple message bot created with Rete.js [Cha23]. Custom node and
connection types can be created, allowing for conditional data processing
and execution.

October 12, 2023 65

6. Implementation

Considering US-20 and the results from Chapter 2 and Chapter 3, multiple nodes can
be defined that must exist to create artificial intelligence models. Figure 6.4 displays
those nodes, which are available in the visual programming editor. With the dataset
node, users can select an existing dataset they want to use to train the NN model. For
feature extraction, convolutional nodes (Conv2D), linear nodes (Linear), and pooling
nodes (Pooling) can be added. Between those nodes, it is possible to connect batch
normalization or dropout nodes. The Flatten node is specifically for transforming two-
dimensional data to one-dimensional data so that linear nodes can process the data.
Section 3.1 introduced the residual block. The used skip connections require branching
between the connected nodes and a way to merge the branches again. This is realized
through the Add node. It accepts two incoming connections from nodes, whose data is
then added. In the case of the U-Net architecture, the branches are not added but con-

Figure 6.4.: The different nodes implemented in the visual programming editor.

catenated (see Section 3.3). This can be done with the Concatenate node. Additionally,
with a combination of those nodes, the inception module (see Section 3.1) can be real-
ized (see Figure A.8). The Output node manages the various training parameters, like
the loss and optimizer function that should be used. Lastly, the Metric node supports
various metrics calculated for the train, validation, and test dataset.

Each node contains multiple so-called control elements. These are comparable to the
parameter adjustment elements in block-based languages (see Section 4.4). Each control
element changes node-specific parameters to allow high customizability in creating the
NN architecture as required by US-20.

66 Jannes Neemann

6.3. Creating Neural Network Architectures

A user test (see Section 7) of the visual programming editor showed that it was difficult
to understand each node’s functionality and how they should be connected. To over-
come this, a detailed explanation text was added for each node. These explanations are
based on Chapter 2 and Chapter 3. Figure 6.5 illustrates the explanation of the Linear
node. The content is stored in Markdown documents. This allows easy formatting and
including math formulas through the library MathJax [Con23b]. First, a general intro-
duction to the Node’s inner workings and general application cases is given. Afterward,
the different Node parameters are explained, and tips on which parameter values are
generally a good choice. Different webpages are linked in the additional information
paragraph if users want to deepen their knowledge of the Node. A link to the respective
PyTorch documentation page is included if the Node represents a PyTorch layer (see
Section 6.4.2).

Figure 6.5.: The detailed information displayed for the Linear node.

Figure 6.6 displays an example NN architecture created with the visual programming
editor and the nodes presented before. Offering such a variety of nodes also presents
many cases of possible errors. Therefore, different validation procedures are in place.

October 12, 2023 67

6. Implementation

The main one is the validation of connections. As explained in the introduction, Rete.js
allows for typed sockets. Each node defines the types of input and output sockets it
supports. For example, the Conv2D-node processes and outputs only two-dimensional
data. Therefore, if a user tries to connect this node to a linear node, which only accepts
and outputs linear data, the user will receive a warning message that this connection
can not be created and a Flatten node has to be added in between.

Therefore, if a user tries to connect this node to a Linear node, which only supports
linear data as input and output, it will get a warning message that this is impossible
and a Flatten node has to be added in between. Besides validating connections, nodes
are also checked. The editor should only contain a single NN architecture. Therefore,
users are prevented from adding multiple Dataset- and Output-nodes, as these are the
start and end nodes of every architecture. Additionally, a path must exist from the
Dataset node to the Output node while passing through at least one node that extracts
features. Another likely error is missing the final Linear node that maps the features
to the selected dataset’s defined classes. Thereby, this layer is automatically added if
missing.

Figure 6.6.: A neural network architecture created with the visual programming editor
in PathoLearn.

6.3.2. Predefined Neural Network Architectures

Besides the nodes that allow highly customized architectures, predefined architecture
nodes are available as defined in US-19. For classification tasks, the in Section 3.1
mentioned state-of-the-art architectures are available (see Figure 6.7). Multiple versions
are available for ResNet and VGG (e.g., resnet18, resnet11, vgg11, vgg16) that the
user can select. Additionally, it can be selected whether a pre-trained model should be
used (General) or not (No) (see Section 3.4). Only linear layers can be connected to

68 Jannes Neemann

6.3. Creating Neural Network Architectures

the output of the node (fc) to allow learning of task-specific features, as explained in
section 3.4. The classification architectures are directly available in PyTorch and can be

Figure 6.7.: The predefined architecture nodes available in PathoLearn.

dynamically loaded based on their name (see Listing 7).

model = torchvision.models.get_model("resnet18", weights="DEFAULT")

Listing 7: Loading the ResNet-18 architecture with pre-trained weights in PyTorch.

Object detection and segmentation tasks are handled differently. The use of specialized
layers, e.g., deconvolution and ROI pooling (see Section 3.2 and Section 3.3), makes it
difficult to create complete architectures with individual nodes in the visual programming
editor. Therefore, the Segmentation node covers different segmentation architectures.
As segmentation is a specialized object detection task, only segmentation tasks can be
realized in the visual programming editor due to how segmentation datasets are created
(see Section 6.4.1). Section 3.3 presented that these architectures utilize backbones to
learn features on the image. Therefore, the Segmentation node allows the selection of an
encoder model for feature detection. Internally, the library Segmentation Models is used
[Iak23]. It is comparable to the torchvision library (see Listing 8) and offers different
architecture specifically designed for segmentation tasks.

import segmentation_models_pytorch as smp
model = smp.create_model(arch="unet", encoder_name="resnet18", in_channels=3, classes=2)

Listing 8: Loading the U-Net architecture with the ResNet-18 architecture as feature
encoder in PyTorch.

To further ease the process of creating a NN in the visual programming editor, the
user can generate a complete architecture by only choosing a dataset and the desired
complexity of the network (see Figure 6.8). The Dataset node, the Architecture node,
the Output node, and the Metric nodes are added to the editor based on the user’s
selection (see Figure 6.9).

October 12, 2023 69

6. Implementation

With this setup, users can create arbitrary complex architectures, either with multiple
specialized nodes or predefined architectures. The visual editor allows users to create,
move, connect, or delete nodes. To make these features accessible for collaborative
working, as required by US-13, additional features need to be implemented.

Figure 6.8.: Interface for generating a Neural Network model based on the selected
dataset and chosen properties.

Figure 6.9.: A neural network architecture generated with the interface displayed in Fig-
ure 6.8.

70 Jannes Neemann

6.3. Creating Neural Network Architectures

6.3.3. Collaboration

Collaborative working in groups requires synchronizing the visual programming editor
between every user in the group. Each user should receive the changes made by another
user in real-time without manually requiring to refresh the editor.

HTTP Polling, HTTP Long Polling, Server Send Events (SSE), and Websockets are
methods to enable real-time communications. HTTP Polling requires the users’ client
to repeatedly request the server for updates. This can waste the server’s resources,
as the request is also executed if no updates are available. This also does not enable
real-time updates, as the update frequency depends on the defined polling rate and the
latency of the communication between the server and the client. Instead, it would be
preferable that the server can push an update directly to clients. This is impossible as
the web browser initiates every communication with the server [SOM11]. HTTP Long
Polling tries to overcome this. Instead of the server directly returning the response to the
request, it holds it. If an update occurs or after a long time with no updates, the server
sends the response and closes the request [SOM11]. While this reduces the number of
requests made to the server, it must keep the connections for every connected client
open. Each connection allocates resources for the duration of the polling request. SSE
improves this further by allowing servers not to close the request after the first update
but to keep the connection open until it is manually closed. If the client has established
a connection, the server can send indefinitely many events to which the client listens
[Usi23].

Polling methods and SSE only allow uni-directional communication from the server to
the client. This limits the possibilities in multi-user collaboration applications, as user
changes cannot be published with the same connection. Instead, an additional request
is necessary.

The WebSocket protocol solves this, as it enables bi-directional communication [MF11].
It is built on TCP and is designed to work over HTTP ports 80 and 443. A handshake
comparable to the TLS handshake is used to establish a connection. The client makes
an HTTP request with the HTTP upgrade header set to inform the server that it would
like to change (upgrade) the connection from the HTTP protocol to the WebSocket
protocol [MF11]. The server acknowledges, and every further communication over the
TCP connection is switched to the binary bi-directional WebSocket protocol.

The native WebSocket implementation in the browser allows simple sending and receiv-
ing of data between server and client. Many different open source WebSocket libraries
exist that build on top of the WebSocket protocol and implement additional features,
like automatic reconnecting if the connection is aborted, broadcasting messages to all
users, and often support concepts of Rooms or Channels, which allow sending messages
only to a subset of users connected to the WebSocket. This is especially useful in the

October 12, 2023 71

6. Implementation

case of US-13, where users should work in groups. Therefore, the update message should
only be sent to users connected to the same visual editor instance.

Socket.IO is a popular JavaScript library offering many quality-of-life features like auto
reconnecting and Rooms [Soc23]. One of Socket.IO’s main selling features is an HTTP
Long Polling fallback. If the WebSocket connection establishment fails due to browser
incompatibility, it uses HTTP Long Polling instead [Soc23]. Today, this is mostly not
needed anymore, as every browser nowadays natively supports the WebSocket protocol
[Web23]. An alternative implementation is µWebSockets.js [UNe23]. It uses a C++
implementation under the hood, which increases the message throughput and reduces
the overall server resources needed compared to Socket.IO [Sim23]. On the other hand,
it does not offer as many additional features as Socket.IO. This is resolved by Soketi.
Soketi is an open source WebSocket server built on top of µWebSockets.js [Sok23]. It
implements the Pusher Channels Protocol (PCP) [Pus23b]. Pusher is comparable to
Socket.IO, as it offers APIs that abstract from the native WebSocket API and imple-
ments additional features [Pus23a]. Like Socket.IO, it uses its own protocol (PCP) to
realize these features. While the protocol and client SDKs for different programming
languages are open source, the server is not. Using Soketi as the server-side protocol
implementation combined with the official Pusher client SDKs creates a performant and
feature-rich WebSocket implementation. The Socket Service displayed in Figure 6.1
therefore uses a Soketi server instance running in its own Docker container, and the
other services wanting to utilize WebSockets use the respective client SDK.

User Connection

As mentioned, the group concept must be implemented in the WebSocket integration.
The PCP offers five different channel types: public channels, private channels, private
encrypted channels, presence channels, and cache channels. Every user who knows the
channel’s name can subscribe to public channels. Private channels mitigate this, as
channel permission must be authorized, with optional message encryption enabled in
private encrypted channels. Presence channels extend private channels by adding the
feature to store information about who is subscribed to this channel. A cache channel
saves and delivers the last sent message to newly connected users.

The information about who is connected to the current visual programming editor is
essential for group collaboration. Users should always know who is connected and who
is possibly missing. Therefore, users connect to the same presence channel. Figure 6.10
visualizes the process of connecting to the presence channel. The WebSocket connection
is initialized after the user connects to the visual programming editor. Since the client
authentication is configured, the Pusher client makes an HTTP-POST request to the
Auth API. The endpoint validates the user session (see Section 6.2) and extracts user
information (e.g., name). The WebSocket client of the API generates a new token for

72 Jannes Neemann

6.3. Creating Neural Network Architectures

WebSocket
Client User 1 Auth API

validate session and
extract user information

WS Server

connect to editor
send auth request

token and
user information

subscribe to channel

subscription succeed
member addded event

WebSocket
Client User 2

WebSocket
Client Auth API

authentication request

token

Figure 6.10.: Sequence diagram of the WebSocket workflow if a new user connects to the
visual editor.

the user. Additionally, the API appends a random color to the user information. The
token with the information is returned to the user’s WebSocket Client, requesting a
subscription to the channel at the WebSocket server with the token and data afterward.
The server registers the users and sends an event to every other group member that a
new user joined the channel. This event contains the user information so that each user
can display the name and color of the new member.

This workflow ensures that only authorized users can join the channel. The color assigned
to each user facilitates easy identification of connected users, particularly when multiple
users share the same name.

Visual Programming Editor Syncronization

Users can connect to the visual programming editor and see which other users are also
connected. As Section 6.3.1 explained, users can add and manipulate nodes and con-
nections. Therefore, these changes must be published to every other user. This can be
done with Pushers client events. Listing 9 shows how a client can subscribe and trigger
events. Specifically, the client-mouse-moved event synchronizes the mouse cursors be-
tween users. If a user moves their mouse, the event is triggered with the updated mouse
position and the client ID as payload data. Every other client receives the event and
updates the virtual cursor position of the user with the specific ID.

To synchronize editor elements, the plugin system of Rete.js is utilized [Plu23]. Plugins
communicate through signals, which are passed through every registered plugin. These
signals contain different editor events depending on the action or change made in the
editor. If a user, for example, creates a connection between nodes, a connectioncreated
event is signaled. Rete.js does not have a plugin for integrated real-time synchronization.
Therefore, a custom plugin was implemented to process every relevant editor event and

October 12, 2023 73

6. Implementation

// Subscribe to an event
channel.bind('client-mouse-moved', (event: MouseMoveEvent) => {

applyMouseMove(event);
});

// Trigger an event
channel.trigger('client-mouse-moved', {

id: 'c3c5a87b-d6fd-483f-9b96-f0d1605c7654',
x: 612.9931388063334,
y: 257.26468859216976,

});

Listing 9: Example of subscribing to an event in a Pusher channel and triggering an
event with data sent along.

trigger client events. The signals also contain the change data and can be sent with the
client events to enable all other clients to apply the changes to their editor.

While this enables synchronization between users, a concurrency issue can arise. Con-
flicts and inconsistencies can occur if two users, for example, modify the same node
simultaneously, possibly creating a race condition. To mitigate these problems, the con-
cept of locks is applied. Locks limit access to resources when there are many threads of
execution. In a multithreaded application, a lock prevents other threads from accessing
the resource (e.g., a file or memory) while a thread modifies it. In this use case, the
resources are the elements of the visual programming editor, and the threads are the
connected users. If a user selects a node, a WebSocket event is sent to notify other users
that this user now locks this node, turning off any interaction with this node for the
users. The visualization of those locks is displayed in Figure 6.11. Two different users
lock the Dataset and Conv2D node. Each node is outlined with the user’s color, and
their name is displayed at the bottom of the node. Besides drawing each user’s cursor,
control elements are also outlined if users select and change them. This allows each user
to be able to follow the actions of other users precisely.

The presented mechanism ensures synchronization between already connected users.
New users need to be synchronized to the newest state if they connect. Therefore, besides
sending WebSockets events, additional HTTP requests are sent to the AI API with the
updates and locks, which are then stored in the database to preserve the current state
of the editor. This state can be downloaded by new users, ensuring it is synchronized
with the other users.

Locks in multithreading applications bring the risk of deadlocks. A deadlock is a situ-
ation where no thread, including itself, can not proceed because each waits for another
thread to finish or unlock a resource. In the case of WebSockets, this can occur if a user
suddenly disconnects, not releasing its locks. To overcome this, each other connected
user receives a WebSocket event if a user disconnects, releasing the locks of that user.

74 Jannes Neemann

6.4. Training Neural Network Models

Additionally, after a new user connects, it compares the list of connected client IDs with
those stored in the lock status, removing all locks that can not match the existing IDs.

Figure 6.11.: Visualization of user locking nodes and control elements.

6.4. Training Neural Network Models

After users created a NN architecture collaboratively, it needs to be trained. Additional
steps are required to make this possible. First, the creation of datasets is explained,
and afterward, how the nodes are parsed to executable PyTorch code. The NN training
workflow and metric visualization are presented in the last section.

6.4.1. Creating Datasets

Datasets are the core element to train NN models. As displayed in Figure 6.6, a dataset
node is the start node of every model created in the visual editor. Users can select
which dataset they want to use for training. US-1 requires users to be able to upload
new datasets. To realize this feature, a standardized format is needed. In the case
of a classification dataset, users are required to upload a compressed folder, where each
contained folder name corresponds to a class, and each folder should only include images
assigned to that class.

As US-4 requires metadata extraction, the uploaded dataset has to be processed and
analyzed to create the relevant metadata before it is uploaded to the centralized dataset
store. Which kind of metadata is stored for each dataset is presented in Section A.3.

October 12, 2023 75

6. Implementation

This results in two upload steps: the upload done by the user to the server and the upload
done by the server to the store. As datasets are generally quite large, these uploads can
take time. To let the users not wait until both uploads are completed, the processing
and uploading on the server are done in the background by the AI API Worker, and the
user gets information about the current dataset status. Figure 6.12 displays the different
steps involved in creating a dataset. After the user enters the required information, the
AI API saves the dataset information in the database and starts a new Celery-Job. The
AI API Worker executes this job and first sends an update event through the WebSocket
Server to the client that the dataset is now being processed and also updates the status
in the database. Afterward, the archive file is extracted, and the metadata is generated
and stored in the database. Lastly, a ClearML dataset is initiated, as explained in
Section 4.3.1, and the files are uploaded to the store. A final status change is executed,
marking the dataset to be ready to use for training.

Frontend AI API

validate
input

AI DB

send upload
dataset request

AI API Worker

extract
archive

generate
metadata

ClearML

save dataset info

start processing

store metadata

job started

create dataset

upload files

dataset finalized

update status (finished)

update status

update status

enter name,
description and file

Figure 6.12.: Sequence diagram of creating a dataset.

Besides uploading classification datasets, segmentation datasets can be created through
the available tasks in PathoLearn. The annotations created by students and teachers
on the WSI represent the masks required for training segmentation models. Therefore,
users can select tasks from PathoLearn from which a dataset will be generated. In the
current implementation, only the tasks that utilize polygon annotations can be selected.
Users can select which annotations should be used for training: the sample solution,
their solution or both. If they want to include their solution, they can select whether
only the correct annotations or all should be included. Considering the sample solution,

76 Jannes Neemann

6.4. Training Neural Network Models

only the actual polygon of an annotation is used, not the inner and outer thresholds.
Figure 6.13 illustrates a sample solution of a PathoLearn task (a) and the resulting mask
(b). The mask is generated from the annotation coordinates and their annotation class
(see Chapter 1). The color saved for the class is reused in the mask.

(a) Patholearn sample solution (b) Mask

Figure 6.13.: The sample solution of a PathoLearn task (a) and the resulting mask (b).

As Section 2.5.2 presented, WSIs can not be used directly for training due to their size.
The WSIs of the selected tasks are split into quadratic patches. The user can decide
which patch size to use: 128, 256 or 512. The WSI viewer implemented in PathoLearn
uses the Deep Zoom file format [Nee21]. It stores the WSI at different resolutions
(levels), and each level is split into 256 × 256 patches. Not every level dimension is
divisible by 256, so some patches at the image’s border are smaller. Due to the fixed
and inconsistent patch size, the patches need to be regenerated. The full resolution of
the WSI is reconstructed from the Deep Zoom and then split into the selected patch
size. Border patches that would not have full-resolution reuse some image data from the
previous patches. As described in Section 2.5.2, the patching removes the contextual
information of annotations. To minimize this, users can choose a downscaling factor.
This factor is applied before patching the image and mask. Therefore, the higher the
downscaling factor, the more contextual information is preserved on each patch, but
fewer patches are generated. Each image and mask patch receive the same file name to
ensure the correct mask-image combination is used during training. As the annotation
class is color-encoded in the mask image, the image and mask patches can be stored
in two separate folders. Those folders are uploaded to ClearML, as described with the
classification dataset (see Figure 6.12).

October 12, 2023 77

6. Implementation

6.4.2. Parsing Visual Programming Editor Nodes

Parsing the NN architecture users create involves converting the nodes in the visual
programming editor into Python/PyTorch code that the server can run. As Section
4.2.2 presented, Lightning should be used besides PyTorch.

The nodes and connections created in the Node Editor can be viewed as a directed acyclic
graph (DAG) G = (A, V), with A being the set of nodes and V the directed edges. Two
nodes v, u ∈ V have a directed connection (v, u) ∈ A, and no cycles (v, v) /∈ A can be
created. This allows the use of graph-based algorithms for parsing the graph to PyTorch
models. As displayed in Figure 6.6, the general structure of a graph created by the
user consists of a dataset node as the start node, an indefinite amount of nodes forming
the NN architecture, and the end of the graph is always formed by an output node,
connected to an arbitrary amount of metric nodes.

class DataModule(pl.LightningDataModule):
def __init__(self, batch_size: int = 32):

super().__init__()
self.batch_size = batch_size

def prepare_data(self):
ClassificationDataset()

def setup(self, stage: str):
self.full_dataset = ClassificationDataset()
self.train_dataset, self.val_dataset, self.test_dataset = random_split(self.full_dataset,

[0.8, 0.1, 0.1])

def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size,

num_workers=multiprocessing.cpu_count(),shuffle=True, drop_last=True)

def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size,

num_workers=multiprocessing.cpu_count(), shuffle=False, drop_last=False)

def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size,

num_workers=multiprocessing.cpu_count(), shuffle=False, drop_last=False)

Listing 10: Datamodule used for classification tasks.

As explained in Section 4.2.2, PyTorch, combined with Lightning, still has boilerplate
code that can be reused for every architecture users create. Therefore, templates repre-
sent these repeating code fragments, and architecture-specific elements are replaced or
injected through Pythons template strings [War02]. Section A.4 introduces the template
used for the dataset class of a classification task. For segmentation tasks, only additional
steps are added to load the mask patches and map the mask colors to numeric labels.
In both cases, the only dynamic element that is changed during runtime is the ClearML
dataset ID, which depends on the selected dataset in the Dataset node. As explained

78 Jannes Neemann

6.4. Training Neural Network Models

in Section 2.5.1, is the selected dataset split into a training, validation and test dataset.
To ease the process, the DataModule class is used from the Lightning library [Lig23].
It offers predefined methods for initially setting up the datasets and creating the re-
quired PyTorch DataLoader objects. As displayed in Listing 10 is the setup function
used to initialize the dataset object and split it into the three sub-datasets. 80% of the
data is used for training, 10% for validation, and 10% for testing. The corresponding
methods use these datasets and, in the Output node, configured batch size to create the
DataLoader objects. Without further configuration, the DataModule instance can be
directly passed to the Lightning-Trainer instance.

In PyTorch, the layers of a model can be grouped inside a torch.nn.Sequential class.
Like every other layer, the input data can be passed to it, acting as a single entry point
to the model. Internally, the data is passed sequentially in the order the layers were
added, representing the entire forward pass of the network (see Listing 11).

model = torch.nn.Sequential(
torch.nn.Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(16, 16, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
torch.nn.Flatten(start_dim=1, end_dim=-1),
torch.nn.Linear(in_features=256, out_features=10, bias=True),

)
prediction = model(x) # forward pass

Listing 11: Example of the PyTorch Sequential class for encapsulating the layers of the
network.

In Section 6.3.1 introduced, the available nodes in the visual programming editor are
parsed to the PyTorch equivalent layers and code. Chapter 2 and Chapter 3 also pre-
sented the relevant parameters that can be adjusted in the different building blocks. As
required by US-20, these parameters can be adjusted in the respective nodes (see Fig-
ure 6.4). Figure 6.14 illustrates examplatory the parsing result of a Conv2D node. The
parameters are directly used as parameters for initializing the corresponding PyTorch
classes. While the layer’s activation function is selected in the node, in PyTorch, this
requires an additional class instantiation. For padding, the user can either select none
or same padding (see Section 2.6.2).

Every PyTorch layer inherits from the torch.nn.Module class, which enables easy im-
plementation of custom layers. This is necessary, as Pooling nodes also support the same
padding options as the Conv2D nodes, but PyTorch does not offer pooling layers with
same padding. To overcome this, a MaxPool2DSame class and a AvgPool2DSame class
were implemented to act as a drop-in replacement for the MaxPool2D and AvgPool2D
classes, if the user selected same padding (see Section A.7).

October 12, 2023 79

6. Implementation

torch.nn.Conv2D(
in_channels=in_channels, # Depends on previous layer
out_channels=16, # Filters
kernel_size=(3,3), # Kernel
stride=(1,1), # Stride
padding=0, # Padding

)
torch.nn.ReLU() # Activation

Figure 6.14.: A convolutional node and the parsed PyTorch elements. The parameter
values of the node are used as the parameters for the corresponding Py-
Torch layers.

The Add and Concatenate Node are mostly realized through explicit PyTorch function
calls, not as torch.nn.Module layer [Tor23b, Tor23c]. Custom layers were implemented
to ease the parsing, which realize the same functionality (see Section A.8). Both nodes
merge branches in the data flow of the neural network, which increases the complexity
of parsing G. With a depth-first approach, the parsing algorithm finds all paths from
the Dataset node to the Output node. This removes all nodes from G that are present
in the visual programming editor but do not have any connections. Additionally, all
branches are detected. A forward pass is simulated while traversing the graph to ensure
the input data can be passed through the network successfully. A data sample is created
based on the selected dataset. After each layer is parsed, the sample is applied to it,
and the output is used as the new sample for the next layer. Suppose multiple layers
use the previous layer output as input and create a branch. In that case, each branch is
recursively parsed, as it could also contain additional branches, and the output of each
branch is tracked to ensure their dimensions match at the Add and Concatenate node.

Considering the realization of the inception module in PathoLearn (see Figure A.8),
multiple Concatenate nodes are used. Listing 12 shows the parsed PyTorch model. The
multiple Concatenate nodes were optimized to a single Concatenate layer. Each branch
in the architecture uses its own torch.nn.Sequential container. This way, an arbitrary
nested neural network can be created and trained.

Besides the inception module, Figure A.9 illustrates an implementation of the residual
block presented in Section 3.1, which uses the Add layer and an additional branch to
create the skip connection.

80 Jannes Neemann

6.4. Training Neural Network Models

The resulting PyTorch model is integrated into a LightningModule (see Listing 3).
Additionally, the metric nodes are parsed to the corresponding TorchMetric classes and
added to the relevant positions in the template (see Section A.6).

self.model = torch.nn.Sequential(
torch.nn.Conv2d(3, 192, kernel_size=(1, 1), stride=(1, 1), padding="same"),
torch.nn.ReLU(),
Concatenate(

torch.nn.Sequential(
torch.nn.Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), padding="same"),
torch.nn.ReLU(),
torch.nn.Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
torch.nn.Sequential(

torch.nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
torch.nn.Sequential(

torch.nn.Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1), padding="same"),
torch.nn.ReLU(),
torch.nn.Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
torch.nn.Sequential(

MaxPool2dSame(kernel_size=(3, 3), stride=(1, 1), padding=0, dilation=1, ceil_mode=False),
torch.nn.Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
),

)

Listing 12: The PyTorch model of the inception module displayed in Figure A.8.

Finally, the Output node is parsed, adding the selected loss and optimizer function to
the Lightning Module (see Section A.6) and initializing a Trainer instance. The script
can be executed after adding the required import statements.

6.4.3. Training workflow

The ClearML Agent presented in Section 4.3.1 is utilized in training the parsed NN.
Each script includes the necessary code to run it on an Agent instance (see Listing 4).
Figure 6.15 illustrates the different steps involved in the training workflow. The user
starts the training, and the AI API parses the NN, as described in the previous section.
The resulting script is sent to the AI-Train Worker, which starts a new Celery-Job
and executes the script, enqueuing the ClearML Task at the ClearML Server. Then a
new periodic Celery-Job is spawned at the AI-Beat Worker. ClearML does not offer
WebSocket capabilities. Therefore, clients must utilize polling to check whether the
ClearML Task is finished. This would create a lot of load on the server. To overcome
this, the AI-Beat Worker acts as a polling middleman for every client. Every five seconds,

October 12, 2023 81

6. Implementation

it loads the task information from the ClearML Server and sends WebSocket events to
the connected clients, informing whether the task status has changed. Each metric node
displays metric-specific values. It displays the minimum, maximum, and current metric
values. To enable automatic updates of those nodes, the worker fetches the newest
metric values from ClearML and sends them with a WebSocket event.

loop

Frontend AI API

parse

AI�Beat Worker

send start request

AI�Train Worker

start script

ClearML

start script job

click start button

parse result

enqueue task
start periodic job

load task

every 5 seconds while
training not finished

Web Socket
Clients

task

send task status

send newest metric values

send metric update notification

load metrics

metrics

Figure 6.15.: The workflow of training a neural network architecture created by users.

As the metric nodes only display the current value, users can show the progression of
metrics over time through diagrams. Figure 6.16 illustrates how this is visualized in
PathoLearn. The users’s selected metrics are displayed as graphs over the training itera-
tions for the training, validation and test dataset. The AI-Beat Worker sends an update
notification that new data is available through a WebSocket event to enable continuous
updates. The new data can not be sent directly with this event, as it can be too big.
Therefore, clients fetch the metrics directly from the server after receiving the update
notification. Besides metrics visualization, the ClearML internal logs are also displayed
(see Figure 6.17). Internal training details are displayed, enabling easier debugging if
errors occur. Like the metric diagrams, the logs are also periodically updated.

If the ClearML Task status changes to a state where no progress on the training is made
(e.g., completed or failed), the periodic Celery-Job is canceled, and no more updates are
sent to the client.

82 Jannes Neemann

6.4. Training Neural Network Models

Figure 6.16.: The metrics page displays the users’ selected metrics in graphs over the
training iterations.

Figure 6.17.: The logs page displaying ClearML internal logs of the training.

October 12, 2023 83

6. Implementation

6.5. Serving Neural Network Models

As defined in US-18, the trained NN should be served to the users. Model serving
is also referred to as using the model ”in production,” which generally means to make
predictions. Section 4.3 already introduced ClearML Serving, which offers an easy-to-use
and scalable approach to serving NN models through REST APIs. Making predictions
on a trained PyTorch model requires the structure of the neural network to exist. The
exported file only contains the parameter values for each layer, which can be loaded
into the architecture. TorchScript overcomes this problem by serializing the PyTorch
models into an optimized, environment-independent format [Tor]. This enables the
model to run on other, possibly more performant programming languages, e.g., C++, to
improve the prediction speed. The Open Neural Network Exchange (ONNX) standard
is an open format to represent NN models [ONN23]. It defines various building blocks
(operators) and a common file format. An ONNX model only contains the necessary
mathematical operations to do inference (prediction). Therefore, ONNX models can
run on any platform supported by the ONNX platform (including mobile phones and
browsers). PyTorch models can be directly converted to ONNX models. The only
downside of using the ONNX operators is that specialized or custom operations are
not supported. Additionally, very small numerical errors can occur due to the different
operator implementations [Tor23d]. The performance evaluation performed in Section
A.11 showed that this numerical error is so small that it does not influence the final
result in any way. Considering the serving performance, it was shown that there is no
significant difference in prediction speed between both formats. Because the ONNX
format aims to create a unified standard for NN model representation independently of
the DL frameworks, it will be used as the serving format in PathoLearn.

PyTorch and Lightning support direct export to the ONNX format. Listing 13 shows the
code used for exporting. As the NN is converted to the operators of ONNX, it is required
to define the expected input dimensions. The input_sample defines an example input.
The dynamic_axes object defines which data elements can have a dynamic size. In this
case, the batch size is variable, allowing users to get predictions on multiple images.
Additionally, the width and height of the image can be arbitrary, as it will be resized
to the required size anyway. Only the number of image channels is fixed, defined by the
dataset the model was trained on. Finally, a ClearML OutputModel is initiated, creating
a Model instance and storing the ONNX model in the ClearML Server.

After exporting and saving the model, a new ClearML Serving endpoint is created. Due
to the missing SDK in ClearML Serving, the endpoint can only be created through
the command-line interface. Listing 14 shows an example command that creates a new
endpoint. The options sent along the command are nearly equivalent to those specified
in the ONNX export in Listing 13. Axis that have a dynamic axis are encoded with a −1.
To create a unique REST endpoint for every trained model, the ClearML Task ID is used.

84 Jannes Neemann

6.5. Serving Neural Network Models

trained_model = LightningModel.load_from_checkpoint(
trainer.checkpoint_callback.best_model_path, model=model

)
trained_model.freeze()
trained_model.eval()
trained_model.to_onnx(

"model.onnx",
input_sample=torch.randn(1, 3, 256, 256, requires_grad=False),
export_params=True,
input_names=["input"],
opset_version=17,
output_names=["output"],
dynamic_axes={

"input": {0: "batch_size", 2: "width", 3: "height"},
"output": {0: "batch_size", 2: "width", 3: "height"},

},
)
OutputModel(task=task, name="model", framework="onnx").update_weights("model.onnx")

Listing 13: Code example of exporting a trained Lightning model to the ONNX format.

Additionally, a script file can be specified through the --preprocess options. It enables
the data preprocessing before sending it to the Triton instance and postprocessing on the
prediction result. The preprocessing involves resizing the image and normalizing it. In
the case of a classification model, the softmax function is applied in the postprocessing
step to get classification probabilities from the model (see Listing 25).

clearml-serving model add --engine triton --input-size -1 $channels -1 -1 --input-type float32
--input-name input --output-size -1 $num_classes --output-type float32 --output-name output
--endpoint $clearml_task_id, --preprocess $preprocessing_path --model-id $model_id --aux-config
platform="onnxruntime_onnx" default_model_filename="model.bin"

↪→
↪→
↪→

Listing 14: Example command for creating a new ClearML Serving endpoint. The ID
of the ClearML Task ID is the endpoint’s name.

After initializing the new endpoint, it can take some time until the Triton instance
registers the new model. Therefore, a Celery-Job is started that checks every five seconds
if the endpoint is accessible. If so, a WebSocket event is sent to inform the user and
update the UI. Figure 6.18 shows the UI presented to a user to make predictions. A
dropzone allows the user to upload an image. Alternatively, a random image can be
selected from the dataset the model was trained on. This image is uploaded to the AI
API, which fetches the dataset metadata and sends a request to the ClearML serving
endpoint. In the case of a classification task, the probability for each class is determined
(see softmax activation function in Section 2.3.3) and returned to the UI through the
AI API. The UI combines the probabilities with the class names stored in the dataset
metadata and displays probabilities per class (see Figure 6.19).

October 12, 2023 85

6. Implementation

Figure 6.18.: Prediction UI enabling users to add an image to get a prediction.

Figure 6.19.: Visualized prediction result for the uploaded image. As a classification task
was trained, probabilities for each class were calculated.

86 Jannes Neemann

6.5. Serving Neural Network Models

Segmentation tasks are handled differently. The probability is calculated for each pixel
and class. The pixel receives the class that has the highest probability. The color for that
class is extracted from the dataset metadata and stored in the pixel position. Finally,
the entire mask is returned to the UI and visualized as illustrated in Figure 6.20. The
annotation classes are displayed to allow users to understand which color is which class.

Figure 6.20.: Visualized prediction result for the uploaded image. As a segmentation
task was trained, a segmentation mask is returned.

October 12, 2023 87

7. User Test

To evaluate the extension of PathoLearn, a user test was conducted. The primary goal
of this test was to determine whether the implemented features worked as intended
and whether they enjoyed them. Also, it should be checked whether the participants’
knowledge of AI improved through using PathoLearn. A working group at the MHH
was asked to participate. Additionally, external cooperation partners from different
universities in Luxembourg, Spain, and Italy were invited to participate.

7.1. Execution

As PathoLearn is primarily a tool for teaching, the general idea was to create an environ-
ment of a lecture. In this lecture, the participants should learn about AI and test their
knowledge in PathoLearn. All participants were invited to an online meeting or could
join physically at the MHH. First, a presentation (lecture) was held, which introduced
AI and how it works. Additionally, the building blocks of artificial intelligence were pre-
sented, and how these are represented in PathoLearn. Some example experiments with
different datasets and NNs were created beforehand in PathoLearn. These explained
how the different nodes can be connected, how multiple users can work together, how
the training can be started and monitored, and how predictions on the trained model
can be made. It was emphasized to create groups to test the collaboration feature thor-
oughly. The participants had one week to test PathoLearn with the provided datasets
or their own uploaded datasets. On the final day, a closing meeting was held to gather
feedback and discuss application use cases of PathoLearn.

Figure 7.1 illustrates the server infrastructure used for realizing the user test. Three
servers were used to host the different services. The Moriarty server was for management
and only ran the ClearML Server instance. Holmes had a ClearML Agent instance
running and was the primary training server as it had the most powerful GPU. Finally,
the Watson server ran the PathoLearn software and ClearML Serving. All servers were
connected through a gigabit ethernet connection. A hosted proxy server was added
because the servers are located inside a private network and cannot be accessed from
the outside. The servers connected to the proxy and all requests from the browser were
passed through the proxy. Due to the relatively slow upload speed of 50 megabits of the
private network, the overall system latency for the user was higher.

88

7.2. Surveys

Moriarty

ClearML Server

Holmes

ClearML Agent

Ubuntu Server 20.04 LTS
Intel i5 11500k
Nvidia RTX 3070 Ti
32 GB RAM
256 GB NVME SSD

Ubuntu Server 20.04 LTS
Intel i7 4770
16 GB DDR3 RAM
128 GB RAM

Watson

ClearML Serving

PathoLearn

Ubuntu Server 20.04 LTS
AMD Ryzen 9 5900x
Nvidia RTX 2070 Super
64 GB RAM
1 TB NVME SSD

Gigabit Ethernet
Gigabit Ethernet

Gigabit Ethernet

Proxy Server

Browser

Figure 7.1.: The infrastructure used for the user test.

7.2. Surveys

Besides collecting feedback through the discussions, two anonymous surveys were con-
ducted. The participants were asked to complete the first survey before using PathoLearn
and should not include the information gathered in the lecture. The primary goal was
to identify the demographics of the group and their general knowledge of AI (see Section
A.13.1). In the second survey (see Section A.13.2), the participants were asked to eval-
uate whether the lecture and software improved their knowledge of AI and if they could
see PathoLearn being used for teaching and researching AI. Additionally, they should
rate how they liked the software’s overall understandability, the UI’s look, and the of-
fered features. Finally, they could suggest functionality they found missing, describe
any problems encountered, and give final feedback.

7.3. Results

Five participants completed the first survey (see Table A.6). Four have a medical back-
ground (digital pathology, neuropathology, oncology), and one has a biological one. One
participant was a medical student. The remaining are either professors, PhD students,
or postdoctoral researchers. All participants have heard of AI and used software that
utilizes AI. They also had a general idea of how artificial intelligence works, but only two
had already created AI. Everyone thinks AI is relevant or very relevant in their current

October 12, 2023 89

7. User Test

or later job, but especially relevant in their current studies and research projects. They
also believe that the relevance of AI will increase in the future.

In the second survey, four participants answered the questions (see Table A.7). All stated
that their understanding of AI improved through the lecture and using PathoLearn.
Considering using PathoLearn in teaching and research, the participants unanimously
agreed that PathoLearn is very usable in the teaching scenario, but some (n = 2)
think that some additional adjustments have to be made to make PathoLearn usable
for actual research. NF-8 requires that PathoLearn is easy to understand. All thought
that the UI is intuitive and easy to understand. The main issue was the general lack
of knowledge about creating NN. The participants found it hard to understand what
the different nodes and parameters do. Therefore, they said that at the current state,
an instructional lecture about NN like the one held is essential. To resolve this issue,
participants wished that each node could display a short explanation of what it does and
how to use it. Also, users would like to get information about the different parameters
in the nodes and suggestions about which to change to increase the performance. This
request was implemented after the user test (see Section 6.3.1).

The possibility to work collaboratively was enjoyed by everyone, especially by the teach-
ers and students, who could see this being actively used in a lecture. There was a
suggestion to extend this further by integrating a chat system.

One topic that participants noted was the reporting and informing of errors. The current
implementation only notifies users of an error. It was wished that the errors were
presented to the user in more detail by providing feedback on how to solve them.

The presented way of making predictions on the trained model was positively accepted
and easy to understand for everyone. It was only wished to make predictions on multiple
images simultaneously and present the results in a different way.

90 Jannes Neemann

8. Requirements Fulfillment

Chapter 5 defined user stories that the End-To-End AI platform extension must fulfill.
Based on these, the in Chapter 6 implementation was presented. Table 8.1 shows that the
extension fulfills all USs. Additional requirements resulting from the user test were also
implemented (see Chapter 7). Besides the USs, additional non-functional requirements

User-Story Fulfillment Reference
US-1 ✔ Section 6.4.1
US-2 ✔ Section 6.4.1
US-3 ✔ Section A.5
US-4 ✔ Section 6.4.1, Section A.3, Section A.5
US-5 ✔ A.5
US-6 ✔ Section A.2
US-7 ✔ Section A.2
US-8 ✔ Section A.2
US-9 ✔ Section A.2
US-10 ✔ Section A.2
US-11 ✔ Section A.2
US-12 ✔ Section 6.3.1
US-13 ✔ Section 6.3.3
US-14 ✔ Section 6.3.1
US-15 ✔ Section 6.3.1
US-16 ✔ Section 6.4.3
US-17 ✔ Section 6.4.3
US-18 ✔ Section 6.5
US-19 ✔ Section 6.3.2
US-20 ✔ Section 6.3

Table 8.1.: Fulfillment of the defined USs in the implemented extension of PathoLearn.

were defined in Section 5.4. NF-1 is fulfilled through the centralized authentication
service (see Section 6.2). As the extension’s services utilize Docker, the same properties
concerning availability (NF-2 and NF-3) are given as the original services of PathoLearn
[Nee21]. Services are automatically restarted if they crash. Multiple instances can

91

8. Requirements Fulfillment

be spawned through Docker Swarm to ensure horizontal scalability. The small user
test showed no performance issues, even with the higher latency. With better network
connectivity, the overall performance could even be increased.

Considering NF-5, a small-scale load test of the collaborative features was conducted
(see Section A.14). It showed that the system is capable of handling many simultaneous
events with multiple connections while having response times below 100 ms. Larger
response times seemed to be primarily caused by the client and not the WebSocket
server. A larger load test must be executed to measure the overall response time of the
system in general and the response time of the collaborative feature specifically.

Additionally, the user test showed that the extension was generally easy to use, and all
participants liked the overall user interface. On the other hand, the visual programming
editor’s concrete functionality was difficult to understand without prior knowledge of AI
(see Section 7.3). Therefore, NF-7 and NF-8 could need additional improvements (see
Chapter 9).

92 Jannes Neemann

9. Conclusion and Future Work

This thesis aimed to evaluate and implement an End-To-End AI platform for the open
source teaching software PathoLearn. Students should get first contact with creating
and using AI, as it becomes increasingly important in their daily jobs. Additionally,
researchers should be able to create AI for their research without writing code. To
identify the concepts required to train NNs, the foundations of ML and especially CNNs
were laid. As digital pathology is primarily based on WSIs, the building blocks of NNs
based on the three computer vision tasks, classification, object detection, and image
segmentation, were presented. Additionally, it was evaluated that PyTorch is the best-
fitting programming framework for creating and training NNs. As the AI lifecycle also
includes dataset management and model serving, available software tools that cover
the entire lifecycle were compared. ClearML came out on top with the most flexible
and complete suite of software libraries and SDKs. It was researched that a visual
programming editor is a common way to remove the necessity of knowing how to write
code. The existing visual programming editors for teaching ML and AI were either poorly
maintained or did not offer to be integrated into other software. Therefore, a custom
visual programming editor was implemented. The possibility to work collaboratively in
(remote) groups through real-time editor synchronization is a key feature that is not
present in the other visual programming editors. This focus on collaboration is also
increased through continuous updates of the training status and metric values. Group
members can make predictions on their trained model by simply uploading an image to
cover the final step of the AI lifecycle.

The user test showed that everyone liked the overall user interface and the general idea
of the visual programming editor. The chosen design and offered functionality were
accepted by everyone, especially the ability to work together. Besides this, the main
downside of the current implementation is the big entry hurdle. Without a general
knowledge of the inner workings of AI, it is very hard to create your architectures in the
editor. Especially for medical students at the MHH who do not have a lecture on AI
will have less motivation to use this software, as students generally want to get through
the exams and not want to do additional work not included in the curriculum. Teachers
of different fields suggested that the theory should be taught in an additional lecture or
even be included in the curriculum, as students must be aware of AI’s relevance in their
jobs and, therefore, gather a general understanding of it.

93

9. Conclusion and Future Work

To reduce the hurdle, info texts for each node were added. This could be further extended
through a more complex feedback system comparable to the one existing in the task-
solving of PathoLearn [Nee21]. It could continuously analyze the architecture and give
feedback and tips on where it could be improved or which kind of node would fit best
next. This can be extended by a step-by-step tutorial, which iteratively creates an
architecture while explaining the reason and functionality of the node added. This can
also be extended to the training workflow. Currently, the system does not give extensive
feedback if the training fails. The concrete error is only displayed on the training logs
page. The user test showed that this reduces the motivation to continue using the
software. Therefore, the feedback system could check the error occurring and generate
concise feedback explaining the error and how to solve it. Besides errors, implementing
a system that analyzes training metrics to detect common effects like overfitting or
underfitting could propose possible parameter or architecture changes to improve the
results.

Datasets for classification can only be created by uploading a folder in a pre-defined
format. This could be improved through deeper integration into PathoLearn, instructing
users through different steps: give the dataset a name, write down the available classes,
and add images to each class. This could improve the understanding of how datasets
work, as they actively add images to different classes. This can also be extended to the
existing tasks in PathoLearn. Currently, they can only be used for creating segmentation
datasets. To improve the connection between solving tasks in PathoLearn and training
NNs on the solved tasks, users could select the annotation groups they want to classify
and the annotations that should be included. Based on this, the patches are extracted
from the WSI, creating a dataset.

A deeper integration with the tasks in PathoLearn can also be realized through the
model serving. For students, a new type of task could be implemented. A served model
is used to make predictions on images. The image and the prediction are presented to
a student, and it has to decide whether the NN made a correct prediction. This would,
on the one side, sensitize the user to using NN in their workflow, and, on the other,
they could verify their knowledge on the topic. Teachers could also benefit from NNs
by using a model to pre-generate annotations on the WSI. This could reduce the time
required to create a task, as teachers must only modify the generated annotations and
add missing ones. As the predictions are patch-based, the challenge of merging patches
has to be resolved for this kind of integration.

The collaborative feature is a primary component of the visual programming editor.
Currently, all projects and experiments can be accessed by all authenticated users. This
could be changed and extended to the course system in PathoLearn. Teachers could
not only create tasks but also experiments in their courses. This way, everything is
encapsulated in a course, which better represents the structure of a lecture. Additionally,
students could create their own projects and experiments. Instead of being publicly

94 Jannes Neemann

available for everyone, they can invite specific users in the system to their project to
grant them access and utilize the collaborative features. As suggested in the user test,
this could be further improved by introducing a chat in the visual programming editor
or even allowing them to communicate through voice chat.

Creating and training NNs is often about changing a few layers or parameters. In the
current implementation, a new experiment would have to be created to realize this.
A version system could be implemented that allows users to clone an architecture to
create a new version inside the same experiment. This allows training a version and
simultaneously preparing a new version for training. This way, users can compare the
performance of different versions to identify which architecture or parameters are the
best. This could also be extended to make the best version publicly available. Other
users could copy the architecture or make predictions on the trained model.

Concluding, this thesis showed how an end-to-end AI platform can be implemented with
a collaborative visual programming editor in the existing software PathoLearn. It builds
the foundation for creating and training NNs based on images. The high-level user in-
terface removes the need to understand and write text-based code. Additionally, they
do not need to think about server management for training and how the model serving
is realized, as everything is happening under the hood. They can focus on improving
their architecture with other group members simultaneously if the performance is unsat-
isfactory. Besides this, the general software architecture allows easy integration of the
presented improvements and additional features.

October 12, 2023 95

A. Appendix

A.1. Comparison of Pre-Trained and Not Pre-Trained
CNNs

Section 3.4 introduced the method of using pre-trained models, which used large datasets,
to improve performance on other, potentially smaller, datasets. This section outlines a
small-scale experiment comparing pre-trained and non-pre-trained models to determine
if pre-trained models demonstrate superior performance.

A.1.1. Dataset

The Breast Cancer Histopathological Database (BreakHis) [SOPH16] dataset is more
complex, as it contains RGB images of 700 × 460 pixels. The 1994 images are also
split into 70% training (1397), 10% validation (199), and 20% test (399) images. The
dataset contains four benign classes (adenosis, fibroadenoma, phyllodes tumor, papillary
carcinoma) and four malignant classes (ductal carcinoma, lobular carcinoma, mucinous
carcinoma, papillary carcinoma). For the training, a binary classification was realized
to determine whether an image is benign or malignant.

A.1.2. Model Configuration

The ResNet-18 architecture was used as the NN model. Three different models were
trained. The first does not use pre-trained weights. The second uses the offered weights
from PyTorch, where the ImageNet dataset was used for training [RDS+15, Mod23b].
The following will refer to it as general. Lastly, the third model used weights trained on
the Breast Histopathology Images (BHI) [JM16] to evaluate whether medical datasets
can improve the performance of other medical datasets. The dataset contains 227, 524
images with 50 × 50 pixels, where 198, 738 are benign and 78, 786 are malignant. There-
fore, the dataset is a lot larger than the BreakHis dataset. The ResNet-18 architecture
was trained with the BHI dataset, and the weights were exported and loaded into the
model for the BreakHis dataset training (see Section 3.4).

96

A.1. Comparison of Pre-Trained and Not Pre-Trained CNNs

All three models were trained for 50 epochs with a batch size of 32. The cross-entropy
loss function was combined with Adam and a learning rate of 0.001. Every training was
run through ClearML with a ClearML Agent. The hardware and software configurations
can be found in Table A.1.

OS Ubuntu Server 20.04 LTS
CPU AMD Ryzen9 5900x, 12 cores, 24 threads, up to 4.80 GHz
Memory 64GB DDR4, 3200 MHz
GPU Nvidia RTX 2070 Super 8GB

Storage 1 TB NVME PCIE 3.0 SSD (OS and software installation)
2 TB SATA SSD (Data storage)

Docker 24.0.5
ClearML Server 1.11.0
ClearML Agent 1.5.2
ClearML Serving 1.3.0
Python 3.10
PyTorch 2.0.1+cu118
Lightning 2.0.7

Table A.1.: Hardware and software specification of the server.

A.1.3. Results

Figure A.1 shows the different loss values for all three models for the training and
validation dataset. It can be seen that both the medical and general model training
converges quickly, while the model with no pre-trained weights has higher loss values
with slower convergences. Additionally, the model shows higher fluctuation, especially
on the validation dataset.

0 500 1000 1500 2000
Steps

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss

general
medical
no

(a) Training

0 500 1000 1500 2000
Steps

0

2

4

6

Va
lid

at
io

n
Lo

ss

general
medical
no

(b) Validation

Figure A.1.: The loss values for both the training (a) and validation (b) datasets.

October 12, 2023 97

A. Appendix

Comparable results can be seen in Figure A.2. The pre-trained models have a much
higher initial accuracy than the model with no pre-trained weights. Due to the faster
training convergence, the accuracy also saturates more quickly. The fluctuation in the
loss values is also reflected in the accuracy. While the model improves its accuracy
continuously, it only showed a maximum training accuracy of 82.70% and 82.41% on
the validation dataset. The difference in accuracy becomes more noticeable on the test
dataset, where it measured 67.17%, and the medical and general model reached 98.74%
and 99.25%, respectively. Comparing the medical and general models, no significant
difference can be observed. Their accuracy and loss values do not differ much.

0 500 1000 1500 2000
Steps

0.4

0.6

0.8

1.0

Tr
ai

n
A

cc
ur

ac
y

general
medical
no

(a) Training

0 500 1000 1500 2000
Steps

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
A

cc
ur

ar
cy

general
medical
no

(b) Validation

Figure A.2.: The accuracy values for both the training (a) and validation (b) datasets.

Finally, it can be said that using pre-trained models significantly increases accuracy
and training speed. Using a dataset from another or similar domain seems to make no
difference. This could be due to the ImageNet dataset containing various classes, and
therefore, many complex features can be learned and reused. Medical or domain-specific
weights could influence the results if the dataset is more complex (e.g., more classes and
complex images).

98 Jannes Neemann

A.2. The Project and Experiment Page

A.2. The Project and Experiment Page

The project and experiment pages are for managing different visual programming in-
stances. A project acts as a container for multiple experiments. As displayed in A.3
the different projects are listed with their name and description. Additionally, users can
create new projects with the buttons available. Users can modify or delete the project
with the three dots in the top right corner.

Figure A.3.: The project page in PathoLearn.

Selecting a project with the arrow navigates the user to the experiment page of the
project. It uses the same layout, listing each experiment (see Figure A.4). Only an
additional element is present for each experiment where it is visualized, whether a created
model is currently training, is finished, or the training failed. The visual programming
editor for the specific experiment is opened by pressing the arrow (see Figure A.5).

October 12, 2023 99

A. Appendix

Figure A.4.: The experiment page in PathoLearn.

Figure A.5.: The visual programming editor in PathoLearn.

100 Jannes Neemann

A.3. Dataset Metadata

A.3. Dataset Metadata

Table A.2 shows the metadata stored to a dataset. Depending on the dataset type,
different metadata is stored. The data is primarily used for pre-processing and training
a neural network.

Metadata Description
dataset_type Indicates the dataset type. Either a classiciation or

segmentation dataset.
is_grayscale Whether the images are grayscale or not.
dimension Stores the width and height of the images.
class_map Maps the human-readable class names, e.g., benign or

malignant, to their internal number required for the
training process. Additionally, it can be used to map
the prediction back to the name. The mask color is
stored for segmentation datasets to generate a predic-
tion mask correctly.

patch_size Used by segmentation datasets. Indicates the size of
each image path.

patch_magnification Used by segmentation datasets. Indicates with which
resize factor the slide was stored and then patched.

task_ids Used by segmentation datasets. Stores the IDs of the
PathoLearn tasks used for generating the segmentation
dataset.

Table A.2.: The different metadata elements stored for a classification or segmentation
dataset.

October 12, 2023 101

A. Appendix

A.4. Dataset Template Code

Listing 15 displays the template code used for creating the PyTorch code for a classifi-
cation dataset. Most of the code is reused for all classification tasks. Only the ClearML
dataset ID is replaced to ensure the correct dataset is used for training.

class ClassificationDataset(Dataset):
def __init__(self):

dataset = ClearmlDataset.get(dataset_id="${dataset_id}")
dataset_path = dataset.get_local_copy()
class_folder_list = glob.glob(f"{dataset_path}/*")

metadata = dataset.get_metadata()
self.class_map = metadata['class_map']
self.dimension = metadata['dimension']
self.is_grayscale = metadata['is_grayscale']
self.y = []
self.x = []
for class_path in class_folder_list:

class_name = class_path.split("/")[-1]

for img_path in glob.glob(f"{class_path}/*.[jp][pn]g"):
self.y.append(self.class_map[class_name])
self.x.append(img_path)

if self.is_grayscale:
normalize = A.Normalize((0.1307,), (0.3081,))

else:
normalize = A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))

resize_dimension = self.dimension
if resize_dimension["x"] > 256:

resize_dimension["x"] = 256
if resize_dimension["y"] > 256:

resize_dimension["y"] = 256
self.transform = A.Compose([

A.Resize(height=resize_dimension["y"], width=resize_dimension["x"]),
normalize, ToTensorV2(),

])

def __len__(self):
return len(self.x)

def __getitem__(self, idx):
img_path = self.x[idx]
target = self.y[idx]
image = Image.open(img_path)
if self.is_grayscale:

image = image.convert("L")
else:

image = image.convert("RGB")
image = np.array(image)
if self.transform:

image = self.transform(image=image)['image']
return image, torch.tensor(target)

Listing 15: PyTorch dataset template used for classification tasks.

102 Jannes Neemann

A.5. The Dataset Page

A.5. The Dataset Page

The extension offers a page where all created datasets are listed (see Figure A.6). The
dataset’s type and current processing status are displayed for each listed dataset. On this
page, new datasets can be created Clicking one of the right arrows opens the detailed

Figure A.6.: The datasets page, where datasets are listed.

dataset page. As displayed in Figure A.7, example images of the dataset are listed.
The metadata generated based on Table A.2 is also displayed. The dataset can also be
deleted. This is only possible if the dataset is not used by any experiment.

Figure A.7.: The detailed dataset page.

October 12, 2023 103

A. Appendix

A.6. Lightning Model for Classification Tasks

Listing 16 displays the template code for the Lightning classification model. Besides
the learning rate, the metrics selected by the users are injected. The loss function
is replaced in the shared step method, accompanied by the selected optimizer in the
configure_optimizers method.

class LightningModel(pl.LightningModule):
def __init__(self, model):

super().__init__()

self.learning_rate = $learning_rate

self.model = model

self.save_hyperparameters(ignore=["model"])

$metrics_constructors

def forward(self, x):
return self.model(x)

def _shared_step(self, batch):
features, true_labels = batch
logits = self(features)
loss = ${loss}(logits, true_labels)
predicted_labels = logits
return loss, true_labels, predicted_labels

def training_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("train_loss", loss)

To account for Dropout behavior during evaluation
self.model.eval()
with torch.no_grad():

_, true_labels, predicted_labels = self._shared_step(batch)
$metrics_train_updates

self.model.train()
return loss

def validation_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("valid_loss", loss)

$metrics_valid_updates

def test_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("test_loss", loss)

$metrics_test_updates

def configure_optimizers(self):
optimizer = ${optimizer}(self.parameters(), lr=self.learning_rate)
return optimizer

Listing 16: Lightning template for a classification model.

104 Jannes Neemann

A.7. PyTorch Pooling Layers with Same Padding

A.7. PyTorch Pooling Layers with Same Padding

The pooling layer in PyTorch does not support same pooling. Therefore, custom layers
for maximum and average pooling were implemented that calculate the padding so that
the input and output dimensions match [Kuv22].

class MaxPool2dSame(torch.nn.MaxPool2d):
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:

return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)

def forward(self, x: torch.Tensor) -> torch.Tensor:
ih, iw = x.size()[-2:]

pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])

if pad_h > 0 or pad_w > 0:
x = torch.nn.functional.pad(x, [pad_w // 2, pad_w - pad_w // 2,

pad_h // 2, pad_h - pad_h // 2])
return torch.nn.functional.max_pool2d(x, self.kernel_size, self.stride, self.padding,

self.dilation, self.ceil_mode, self.return_indices)

Listing 17: Custom maximum pooling layer that implements same padding.

class AvgPool2dSame(torch.nn.AvgPool2d):
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:

return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)

def forward(self, x: torch.Tensor) -> torch.Tensor:
ih, iw = x.size()[-2:]

pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])

if pad_h > 0 or pad_w > 0:
x = torch.nn.functional.pad(x, [pad_w // 2, pad_w - pad_w // 2,

pad_h // 2, pad_h - pad_h // 2])
return torch.nn.functional.avg_pool2d(x, self.kernel_size, self.stride, self.padding,

self.ceil_mode, self.count_include_pad, self.divisor_override)

Listing 18: Custom average pooling layer that implements same padding.

October 12, 2023 105

A. Appendix

A.8. PyTorch Layers for Addition and Concatenation

PyTorch has no Add and Concatenate Layer natively built in. As the parsing algorithm
uses PyTorch layers as node representation, an Add and a Concatenate layer were imple-
mented. In both layers, an additional check is implemented that covers the case where
the input channels of the first layer of the first input and the first layer of the second
input do not match. This is needed to realize a residual block, as the node from which
a branch is created is used as an input for the Add node. Depending on the previous
node, the input channel size can differ from the one used in the branch’s first node.

class Add(torch.nn.Module):
def __init__(self, *modules):

super().__init__()
self.sum_modules = torch.nn.ModuleList(modules)

def forward(self, x):
first_in = self.sum_modules[0][0].in_channels
second_in = self.sum_modules[1][0].in_channels

if first_in != second_in:
out = self.sum_modules[0](x)
module_sum = out + sum(module(out) for module in self.sum_modules[1:])
return module_sum

return sum(module(x) for module in self.sum_modules)

Listing 19: The Add layer that adds the output values of multiple layers together.

class Concatenate(torch.nn.Module):
def __init__(self, *modules) -> None:

super().__init__()
self.concate_modules = torch.nn.ModuleList(modules)

def forward(self, x):
first_in = self.concate_modules[0][0].in_channels
second_in = self.concate_modules[1][0].in_channels

if first_in != second_in:
out = self.concate_modules[0](x)
outputs = [out]
outputs += [module(out) for module in self.concate_modules[1:]]
return torch.cat(outputs, dim=1)

return torch.cat([module(x) for module in self.concate_modules], dim=1)

Listing 20: The Concatenate layer concatenates the output values of multiple layers to-
gether.

106 Jannes Neemann

A.9. The Inception Module Realized in PathoLearn

A.9. The Inception Module Realized in PathoLearn

Figure A.8 illustrates an implementation of the inception module in PathoLearn. The
Concatenate Node only accepts two inputs. Therefore, multiple of those are required.

Figure A.8.: The inception module realized in PathoLearn.

October 12, 2023 107

A. Appendix

A.10. The Residual Block Realized in PathoLearn

Figure A.9 illustrates a simple residual block realized in PathoLearn and the resulting
PyTorch layer code.

self.model = torch.nn.Sequential(
Add(

torch.nn.Sequential(
torch.nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
torch.nn.Sequential(

torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding="same"),
torch.nn.ReLU(),
torch.nn.Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding="same"),
torch.nn.ReLU(),

),
),

)

Figure A.9.: A simple residual block realized in PathoLearn (top) and the resulting Py-
Torch model (below).

108 Jannes Neemann

A.11. Evaluating the Best Neural Network Model Serving Format

A.11. Evaluating the Best Neural Network Model
Serving Format

Section 6.5 introduced two formats for serving trained NNs: TorchScript and ONNX.
A load test was conducted to determine the best-fitting format in combination with
ClearML Serving and Triton. To evaluate the performance, two datasets of different
complexity were used. Additionally, a NN with few layers was used to train the less
complex dataset and a NN with many layers for the more complex dataset.

A.11.1. Training Environment

The ClearML Serving instance uses Triton with GPU support. Both run inside Docker
containers, including additional containers for request management and metric collec-
tion. All containers run on a single server. Table A.3 shows the server’s hardware and
software specifications. For training, a ClearML Agent was utilized.

OS Ubuntu Server 20.04 LTS
CPU AMD Ryzen9 5900x, 12 cores, 24 threads, up to 4.80 GHz
Memory 64GB DDR4, 3200 MHz
GPU Nvidia RTX 2070 Super 8GB

Storage 1 TB NVME PCIE 3.0 SSD (OS and software installation)
2 TB SATA SSD (Data storage)

Docker 24.0.5
ClearML Server 1.11.0
ClearML Agent 1.5.2
ClearML Serving 1.3.0
Python 3.10
PyTorch 2.0.1+cu118
Lightning 2.0.7

Table A.3.: Hardware and software specification of the server.

A.11.2. Datasets

The MNIST dataset contains images of handwritten numbers from 0 to 9 [Den12]. Each
grayscale image is 28 × 28 pixels. It contains 68992 images, split into 70% training
(48294), 10% validation (6899), and 20% test (13799) images. The Breast Cancer

October 12, 2023 109

A. Appendix

Histopathological Database (BreakHis) [SOPH16] dataset is more complex, as it con-
tains RGB images of 700 × 460 pixels. The 1994 images are also split into 70% training
(1397), 10% validation (199), and 20% test (399) images. It contains eight classes (adeno-
sis, ductal carcinoma, fibroadenoma, lobular carcinoma, mucinous carcinoma, papillary
carcinoma, phyllodes tumor, and tubular adenoma).

A.11.3. Neural Network Architecture and Training Configuration

Listing 21 shows the NN architecture used for training the MNIST dataset. A simple
combination of convolutional and pooling layers was used. A single linear layer maps
the features to the ten classes.

torch.nn.Sequential(
torch.nn.Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False),
torch.nn.ReLU(),
torch.nn.Conv2d(16, 16, kernel_size=(5, 5), stride=(1, 1)),
torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False,),
torch.nn.Flatten(start_dim=1, end_dim=-1),
torch.nn.Linear(in_features=256, out_features=10, bias=True),

)

Listing 21: Neural Network configuration for the MNIST dataset.

The BreakHis dataset was trained with a ResNet-50 architecture, as displayed in Listing
22. It used pre-trained weights of the ImageNet dataset, and the feature collector was
overridden to classify the eight classes. Both used the Cross-Entropy loss function in
combination with the Adam optimizer and a learning rate of 0.001. The BreakHis NN
architecture was trained for 30 epochs with a batch size of 32. As the MNIST NN
architecture is simpler and the images smaller, the training was only run for 15 epochs
with a batch size of 128. During the training, the model with the lowest validation loss
was saved and, after the training, converted into the TorchScript and ONNX format.
Both converted models were uploaded to the ClearML server, and new ClearML serving
endpoints were created for four models.

self.model = torchvision.models.get_model(name="resnet50", weights="DEFAULT")
self.model.fc = torch.nn.Sequential(torch.nn.Linear(in_features=2048, out_features=8, bias=True))

Listing 22: Neural Network configuration for the BreakHis dataset.

110 Jannes Neemann

A.11. Evaluating the Best Neural Network Model Serving Format

A.11.4. Metric Gathering

To evaluate the performance, a load test was performed. Grafana k6 is an open source
load testing tool that tests REST-APIs with single-user or multi-user interaction [K6D23].
Listing 24 shows the script used to load test the different ClearML serving endpoints.
The DATASET and FORMAT constants configure the dataset and format to use. The
options object contains the dataset metadata and the model IDs for the different for-
mats.

A single-user and a multi-user test is performed for each dataset and format. Listing
23 shows the command for running a single-user test for 100 iterations on the BreakHis
dataset and the ONNX format. The --vus option defines the number of virtual users
to create, and the --iterations options the number of iterations the script will be
executed. The multi-user test uses 10 virtual users and 1000 iterations. If equally
distributed between the virtual users, each should perform 100 requests.

k6 run --out csv=breakhis_onnx_1_100.csv --vus 1 --iterations 100 script.js

Listing 23: Command for running a single-user test for 100 iterations on the BreakHis
dataset with the ONNX format. The results are stored in a CSV file.

Grafan k6 gathers a variety of different metrics [Bui23]. As only the performance should
be evaluated, only those metrics concerning the HTTP request speed are of interest.
The http_req_waiting metric represents the time the client waits for a response from
the server. It measures the time the server needs to process the request and return the
predictions. Therefore, it is the most fitting metric for evaluating the performance of
serving endpoints with different formats, as it excludes factors like the time needed to
establish the request and the time needed to upload the image.

Besides response duration, the numerical error is determined. Five images of each dataset
are used to get predictions for the PyTorch and ONNX format. Afterward, the difference
between each class probability represents the prediction error. The minimum, maximum,
and average error is determined for each test image.

October 12, 2023 111

A. Appendix

import http from 'k6/http';
import { sleep } from 'k6';
import { check } from 'k6';

const DATASET = 'mnist';
const FORMAT = 'pytorch';

const options = {
mnist: {

image: './mnist.bin',
metadata: {

class_map: { 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9 },
dimension: { x: 28, y: 28 },
is_grayscale: true,

},
pytorch: '97460cea38db4c868eaf1ae899a21b17',
onnx: '4764941541f545829b4e0f096065b5b9',

},
breakhis: {

image: './breakhis.bin',
metadata: {

class_map: {
adenosis: 0,
ductal_carcinoma: 1,
fibroadenoma: 2,
lobular_carcinoma: 3,
mucinous_carcinoma: 4,
papillary_carcinoma: 5,
phyllodes_tumor: 6,
tubular_adenoma: 7,

},
dimension: { x: 700, y: 460 },
is_grayscale: false,

},
pytorch: '64efc65890b8493fb896ef38985ee47e',
onnx: 'ed197849ec134041925a5c802b821950',

},
};
const image = open(options[DATASET].image);

export default function () {
const modelId = options[DATASET][FORMAT];
const url = `http://xxx.xxx.xxx.xxx:8080/serve/${modelId}`;
const payload = JSON.stringify({

image: image,
metadata: options[DATASET].metadata,

});
const params = {

headers: {
'Content-Type': 'application/json',

},
};
const res = http.post(url, payload, params);
console.log(res.json()['probabilities'][0]);
check(res, {

'is status 200': (r) => r.status === 200,
'has probabilities': (r) =>

r.json()['probabilities'][0].length ===
Object.keys(options[DATASET].metadata.class_map).length,

});
sleep(1);

}

Listing 24: Script for load testing the ClearML Serving REST-endpoint with Grafana
k6.

112 Jannes Neemann

A.11. Evaluating the Best Neural Network Model Serving Format

A.11.5. Results

Figure A.10 and Figure A.11 show the results for the single-user and multi-user tests
respectively. Generally, the MNIST shows on both tests, as expected, a much smaller
request duration than the BreakHis dataset. Additionally, the durations fluctuate be-
tween the iterations, especially at the multi-user test. Comparing the average durations
between the PyTorch and ONNX formats, it can be seen that both formats perform
similarly. In the single-user test, the ONNX format is slightly faster and slightly slower
in the multi-user test.

0 20 40 60 80 100
Iteration

3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.6

ht
tp

_r
eq

_w
ai

tin
g

(m
s)

onnx
pytorch
onnx mean
pytorch mean

(a) MNIST

0 20 40 60 80 100
Iteration

170
180
190
200
210
220
230
240
250
260
270

ht
tp

_r
eq

_w
ai

tin
g

(m
s)

onnx
pytorch
onnx mean
pytorch mean

(b) BreakHis

Figure A.10.: Results of the single-user test for 100 iterations.

Table A.4 and Table A.5 displays the gathered minimum, maximum, and average error.
On both datasets, the ONNX predictions differ slightly from the PyTorch predictions.
For every test image, a prediction error can be observed. The largest absolute error for
the MNIST dataset was 4.768372 × 10−7 and for the BreakHis dataset 2.048910 × 10−8.
This numerical error is so small that it does not influence the final classification result.

image min max mean
1 −5.820766 × 10−10 7.372575 × 10−18 −7.435819 × 10−11

2 0.000000 3.126388 × 10−13 4.238145 × 10−14

3 0.000000 2.728484 × 10−12 2.822677 × 10−13

4 0.000000 1.746230 × 10−8 1.753643 × 10−9

5 −4.768372 × 10−7 4.768372 × 10−7 4.195565 × 10−12

Table A.4.: Prediction difference between PyTorch and ONNX models of the MNIST
dataset. The differences between the ten class probabilities were used to
calculate the maximum, minimum, and mean for every image.

October 12, 2023 113

A. Appendix

0 200 400 600 800 1000
Iteration

3
6
9

12
15
18
21
24
27
30
33

ht
tp

_r
eq

_w
ai

tin
g

(m
s)

onnx
pytorch
onnx mean
pytorch mean

(a) MNIST

0 200 400 600 800 1000
Iteration

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750

ht
tp

_r
eq

_w
ai

tin
g

(m
s)

onnx
pytorch
onnx mean
pytorch mean

(b) BreakHis

Figure A.11.: Results of the multi-user test with 10 virtual users and for 1000 shared
iterations.

image min max mean
1 0.000000 6.217249 × 10−14 8.654806 × 10−15

2 −1.004082 × 10−9 4.092726 × 10−12 −1.253233 × 10−10

3 −9.822543 × 10−11 2.048910 × 10−8 2.913836 × 10−9

4 −1.818989 × 10−11 0.000000 −2.461401 × 10−12

5 −2.473826 × 10−10 3.637979 × 10−10 −1.067235 × 10−11

Table A.5.: Prediction difference between PyTorch and ONNX models of the BreakHis
dataset. The differences between the ten class probabilities were used to
calculate the maximum, minimum, and mean for every image.

114 Jannes Neemann

A.12. Examplatory Pre- and Postprocessing script

A.12. Examplatory Pre- and Postprocessing script

from typing import Any

import numpy as np
from PIL import Image
import torch
from io import BytesIO
import base64
import albumentations as A
from albumentations.pytorch import ToTensorV2

class Preprocess(object):
def __init__(self):

pass

def preprocess(self, body: dict, state: dict, collect_custom_statistics_fn=None) -> Any:
image = Image.open(BytesIO(base64.b64decode(body["image"]))).convert("RGB")
dataset_metadata = body["metadata"]
dimensions = dataset_metadata["dimension"]
image_numpy = np.array(image)
if dimensions["x"] > 256:

dimensions["x"] = 256
if dimensions["y"] > 256:

dimensions["y"] = 256
transform = A.Compose(

[
A.Resize(height=dimensions["y"], width=dimensions["x"]),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),

]
)
data = transform(image=np.array(image_numpy))["image"]
return np.array([data.numpy()]).astype(np.float32)

def postprocess(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> dict:
if not isinstance(data, np.ndarray):

return dict(digit=-1)
data = torch.tensor(data)
propabilities = torch.nn.functional.softmax(data, dim=1)
return dict(propabilities=propabilities.tolist())

Listing 25: Examplatory script that executes pre- and postprocessing steps before the
prediction and after for a classification model.

October 12, 2023 115

A. Appendix

A.13. Surveys

A.13.1. Survey before Using Patholearn

Section A: General Questions (Before using PathoLearn)
This survey should be filled out wihtout the gathered knowledge from the held introductional presentation.

A1. What is your profession?
(e.g. student, professor,...)

A2. What is your major or research field?

A3. Have you heard of artificial intelligence before?

Yes

No

A4. Have you used software with the knowledge that it utilizes artificial
intelligence?

Yes

No

A5. Have you ever created artificial intelligence in any way by yourself?

Yes

No

A6. Do you have a general idea of how artificial intelligence works?

Yes

Somewhat

No

A7. What is your perception of the relevance of artificial intelligence in
your (later) job?

Very relevant

Relevant

Not relevant

No relevance at all

116 Jannes Neemann

A.13. Surveys

A8. What is your perception of the relevance of artificial intelligence in
your current studies or research projects?

Very relevant

Relevant

Not relevant

No relevance at all

A9. Do you think the relevance of artificial intelligence will increase in the
future?

Yes

Yes, but not much

No, not really

No relevance at all

Powered by TCPDF (www.tcpdf.org)

October 12, 2023 117

A. Appendix

A.13.2. Survey after Using Patholearn

Section A: General Questions (After using PathoLearn)
This survey should be filled out after using PathoLearn.

A1. Did your understanding of how artificial intelligence works improve?
(e.g. student, professor,...)

Yes

Slightly

No, why

A2. Could you see the tool being used for teaching artificial intelligence?

Yes

Undecided, why?

No, why?

A3. Could you see the tool being used to research artificial intelligence in
the medical research field or your research project?

Yes

Undecided, why?

No, why?

118 Jannes Neemann

A.13. Surveys

A4. How easy was PathoLearn to understand for you?

Easy

Medium

Hard

A5. On a scale from 1-5, how did you enjoy using PathoLearn (5 being the
best)?

1

2

3

4

5

A6. On a scale of 1-5, how did you like the possibility of working with
colleagues simultaneously (5 being the best)?

1

2

3

4

5

A7. On a scale from 1-5, how did you like the overall look of the UI (5
being the best)?

1

2

3

4

5

October 12, 2023 119

A. Appendix

A8. On a scale from 1-5, how did you like the presented way of testing the
trained artificial intelligence models (Prediction)

1

2

3

4

5

A9. What kind of functionallity did you find missing or wished to be
included (an explanation would be great)?

A10. Did you encounter any problems?

A11. Do you have any final feedback?

Powered by TCPDF (www.tcpdf.org)

120 Jannes Neemann

A.13. Surveys

A.13.3. Survey Answers before Using PathoLearn

A1. What is your profession?
User Answer

1 Imaging analyst
2 PhD Student
3 Professor
4 medical student
5 PostDoc

A2. What is your major or research field?
User Answer

1 Digital pathology
2 Immunology, Oncology
3 Oncoimmunology
4 neuropathology
5 Biology

A3. Have you heard of artificial intelligence before?
User Answer

1 Yes
2 Yes
3 Yes
4 Yes
5 Yes

A4. Have you used software with the knowledge that it utilizes artificial
intelligence?

User Answer
1 Yes
2 Yes
3 Yes
4 Yes
5 Yes

A5. Have you ever created artificial intelligence in any way by yourself?
User Answer

1 Yes
2 No
3 No
4 No
5 Yes

October 12, 2023 121

A. Appendix

A6. Do you have a general idea of how artificial intelligence works?
User Answer

1 Yes
2 Yes
3 Yes
4 Yes
5 Somewhat

A7. What is your perception of the relevance of artificial intelligence in
your (later) job?

User Answer
1 Very relevant
2 Relevant
3 Very relevant
4 Relevant
5 Relevant

A8. What is your perception of the relevance of artificial intelligence in
your current studies or research projects?

User Answer
1 Very relevant
2 Very relevant
3 Very relevant
4 Very relevant
5 Relevant

A9. Do you think the relevance of artificial intelligence will increase in
the future?

User Answer
1 Yes
2 Yes
3 Yes
4 Yes
5 Yes, but not much

Table A.6.: Answers of users to the first survey.

122 Jannes Neemann

A.13. Surveys

A.13.4. Survey Answers after Using PathoLearn

A1. Did your understanding of how artificial intelligence works improve?
User Answer

1 Yes
(No comment)

2 Yes
(No comment)

3 Yes
(No comment)

4 Slightly
(No comment)

A2. Could you see the tool being used for teaching artificial intelligence?
User Answer

1 Yes
(No comment)

2 Yes
(No comment)

3 Yes
(No comment)

4 Yes
(No comment)

A3. Could you see the tool being used to research artificial intelligence
in the medical research field or your research project?

User Answer

1 Undecided, why?
(No comment)

2 Yes
(No comment)

3 Yes
(No comment)

4 Undecided, why?
(No comment)

October 12, 2023 123

A. Appendix

A4. How easy was PathoLearn to understand for you?
User Answer

1 Medium
Die grundsätzliche Oberfläche ist sehr intuitiv (erinnert mich etwas an
Scratch). Bei den einzelnen Knoten wäre es aber hilfreich, wenn man noch
eine Infobox hätte, was dieser Schritt prinzipiell bewirkt, sonst kommt man
mit wenig Hintergrundwissen und einfach mal ausprobieren nicht besonders
weit.

2 Medium
(No comment)

3 Hard
(No comment)

4 Easy
(No comment)

A5. On a scale from 1-5, how did you enjoy using PathoLearn (5 being
the best)?

User Answer
1 4
2 4
3 5
4 4

A6. On a scale of 1-5, how did you like the possibility of working with
colleagues simultaneously (5 being the best)?

User Answer
1 5
2 5
3 3
4 3

A7. On a scale from 1-5, how did you like the overall look of the UI (5
being the best)?

User Answer
1 5
2 5
3 4
4 5

124 Jannes Neemann

A.13. Surveys

A8. On a scale from 1-5, how did you like the presented way of testing
the trained artificial intelligence models (Prediction)?

User Answer
1 5
2 4
3 5
4 4

A9. What kind of functionality did you find missing or wished to be
included (an explanation would be great)?

User Answer

1

1. kleine ausklappbaren Infoboxen mit Hintergrundinfos zu den einzelnen Tools
2. Option, das man direkt von Knoten zu Code und andersherum springen kann
und so auch lernen kann, was dahinter steckt
3. Chatfunktion, um gemeinsames Arbeiten noch effektiver zu machen

2

- I would like to evaluate the performance of neural networks in tasks like cell
segmentation and classification.
- I found missing some suggestions of which networks and which parameters
are the most suitable for the task I chose

3 A vignette explaining main functions

4
For prediction part, it would be more helpful if I could add more than one
picture at once, and it would be better if there is also a table next to the results
showing the predictions directly.

A10. Did you encounter any problems?
User Answer

1

- ”training failed” tritt manchmal auf und ohne Hintergrundwissen hat man
gar keine Idee, wo man etwas ändern muss. Hier wäre die Benennung häufiger
Ursachen hilfreich. Nachdem das Training fehlgeschlagen ist, konnte ich keine
Bearbeitung an dem Projekt vornehmen, um es überarbeitet erneut zu starten.
- ansonsten sind mir keine Probleme aufgefallen (sogar die touch-Funktion
meines Laptops funktioniert ganz normal)

2 no

3 Only problems related to the fact that it’s a difficult subject/task. It requires
training

4 No

October 12, 2023 125

A. Appendix

A11. Do you have any final feedback?
User Answer

1

Sehr schöne Oberfläche. Es macht Spaß unterschiedliche Einstellungen
auszuprobieren und zu schauen, was passiert. Die Möglichkeit bei Prediction
eigene Bilder hochzuladen gefällt mir sehr gut (und besonders der Versuch ab-
sichtlich schwierige Bilder zu erstellen und zu schauen, wann/ob die AI scheit-
ert). Allerdings kann auch schnell Frust aufkommen, wenn man etwas länger
ausprobiert, es nicht funktioniert und man nicht weiß, woran es liegen könnte.
Hier wären zusätzliche Hintergrundinfos nötig, die aber natürlich auch mittels
Kontakt zu einem Dozierenden vermittelt werden könnten.

2 I found PathoLearn a very interesting and innovative tool, suitable for both
teaching and research. Moreover, the interface was very user-friendly.

3 No

4 It is good in general and enough for using in teaching, but I think it needs some
improvements if you want to use it in actual research.

Table A.7.: User responses to the second survey.

126 Jannes Neemann

A.14. Evaluating the Visual Programming Editor Real-Time Performance

A.14. Evaluating the Visual Programming Editor
Real-Time Performance

As stated in the non-function requirements (see Section 5.4), the changes made in the
visual programming editor should be synchronized to all other users in up to 100 ms.
To evaluate if the current implementation fulfills this, a test is conducted.

A.14.1. Environment

The software architecture uses a custom WebSocket server, which processes the incom-
ing WebSocket events and distributes them to the specified channels (see Section 6.1).
Thereby, the network connection to and from the server is deciding for the latency of
the visual programming synchronization. As mentioned in Section 7.1, a proxy server is
required to make PathoLearn accessible from outside of the private network. The test
was conducted inside the private network to overcome the increased latency caused by
the limited upload speed and the additional request over the proxy server.

A single server hosts PathoLearn. Five different devices (clients) were used, each simu-
lating a user connected to the same visual programming editor. The devices are directly
connected to the router via ethernet or Wi-Fi. Therefore, they can have up to gigabit
speed to and from the server. Each device’s connection speed was throttled to simulate
a real-world scenario, where the distance between the server and a client requires multi-
ple hops. The throttling feature of the Chrome browser was utilized [Thr23] and set to
the average connection speed in Germany from February 2023 (download: approx. 83
Mbit/s, upload: approx. 28 Mbit/s) [Ave23].

A.14.2. Procedure

The clients were connected to the same visual programming editor. To evaluate the
performance, a client can act as a sender, which sends WebSocket events. Table A.8
lists the 10 different events used. A sender sends these events to the WebSocket server
every second, distributing them to the other clients. As these events are sent nearly
simultaneously, it is simulated that multiple users concurrently change elements in the
visual programming editor.

The latency of the events is measured by tracking the Round-Trip Time (RTT) from the
sender to the client and back to the sender. If the sender sends an event, a timestamp is
sent with that event. After the client receives an event, it sends a specific response event
back to the sender. The sender receives the response and calculates the time difference

October 12, 2023 127

A. Appendix

between the stored timestamp and the current time. As the RTT is calculated, the
difference is halved.

The events were sent every second for 200 iterations to simulate a load over time and
accompany external factors, like random network speed degradation and client load
spikes.

Event Bytes Description
client-node-locked 278 Indicating to other users that the sender

selected that node and is now locked.
client-node-unlock 223 Indicating to other users that the sender

unselected that node and is now unlocked.
client-control-lock 225 Indicating to other users that the sender

selected a control element of a node and
is now locked.

client-control-unlock 230 Indicating to other users that the sender
unselected a control element of a node and
is now unlocked.

client-control-changed 281 Indicating to other users that the sender
changed the value of a control element.

client-node-dragged 402 Indicating to other users that the sender
changed a node position.

client-node-created 1503 Indicating to other users that the sender
created a new node.

client-node-removed 221 Indicating to other users that the sender
removed a node.

client-connection-created 336 Indicating to other users that the sender
created a new connection between two
nodes.

client-connection-removed 233 Indicating to other users that the sender
removed a connection between two nodes.

Table A.8.: List of used WebSocket events used to synchronize the visual programming
editor between users.

128 Jannes Neemann

A.14. Evaluating the Visual Programming Editor Real-Time Performance

A.14.3. Results

In the first test, a single sender was used. Considering the 200 iterations and the 10 events
per iteration, each client received 2000 events. Figure A.12 illustrates the box plots of
each client for each event. Generally, it can be seen that all clients have, for all events, a
median duration considerably smaller than 100 ms. Considering each client individually,
the median event durations are generally close together. Comparing the clients, a larger
difference in the results can be observed. client_5 shows a large spread in the data,
ranging from values below 10 ms to values larger than 200 ms. This can also be seen
in the large interquartile range (IQR). On the other hand, client_4 has a very small
data spread. Excluding the outliers, it did not show durations larger than 40 ms. The
whiskers of the clients, which were calculated as 1.5 times the IQR, showed that all clients
could achieve durations lower than 20 ms. Additionally, it can be seen that the relative
duration of each event is comparable between clients, e.g., the client-node-locked
has everywhere the smallest median, and the client-connection-removed has the
largest median. Some outliers of events show nearly the same duration. This is due to
the simultaneous sending of the different events and a current network degradation or
system load spike.

0 20 40 60 80 100 120 140 160 180 200 220
time

client_2

client_3

client_4

client_5

re
ce

iv
er

event
client-node-locked
client-node-unlocked
client-control-locked
client-control-unlocked
client-control-changed
client-node-dragged
client-node-created
client-node-removed
client-connection-created
client-connection-removed

Figure A.12.: The box plots of each event duration for each client. The client_1 was
used as a sender. The whiskers extend to 1.5 times the interquartile range.

The second test used client_1 and client_2 as senders. Therefore, the remaining
clients receive 4,000 events each, and the sender clients receive 2,000 from the other
sender. Figure A.13 displays the box plots of the different clients. A similar result as

October 12, 2023 129

A. Appendix

the single sender test can be seen. The high data spread of client_5 is also present.
The increased event amount also produced more outliers. client_4 again has a small
data spread and comparable outlier values. Also, client_3 shows comparable results.
On the other hand, client_2 does not show any outliers, and the IQR is smaller. Lastly,
client_1 shows the smallest data spread. The outliers are close to the whiskers, which
are all under 50 ms.

0 20 40 60 80 100 120 140 160 180 200 220 240
time

client_1

client_2

client_3

client_4

client_5

re
ce

iv
er

event
client-node-locked
client-node-unlocked
client-control-locked
client-control-unlocked
client-control-changed
client-node-dragged
client-node-created
client-node-removed
client-connection-created
client-connection-removed

Figure A.13.: The box plots of each event duration for each client. The client_1 and
client_2 were used as senders. Both senders also received the other sender
events. For the other clients, double the data could be collected due to
the two senders. The whiskers extend to 1.5 times the interquartile range.

Additionally, the average durations of the events per client were calculated to determine
whether it can be generally said that events reach clients in under 100 ms. This is
illustrated in A.14. The results are based on the test with two senders. Generally, the
average durations show comparable results to the box plots. It can be especially seen
that all clients have an average duration below 75 ms. Additionally, the hierarchical
event duration between clients is even more noticeable. As outliers greatly influence the
average calculation, those resulting from the box plots calculation in A.13 were removed,
and the updated average durations are displayed in A.15. All clients only show slight
improvements, except client_5, where it improved by up to 10 ms.

130 Jannes Neemann

A.14. Evaluating the Visual Programming Editor Real-Time Performance

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
time

client_1

client_2

client_3

client_4

client_5

re
ce

iv
er

event
client-node-locked
client-node-unlocked
client-control-locked
client-control-unlocked
client-control-changed
client-node-dragged
client-node-created
client-node-removed
client-connection-created
client-connection-removed

Figure A.14.: The average duration of each event for each client. The client_1 and
client_2 were used as senders. Both senders also received the other
sender events. For the other clients, double the data could be collected
due to the two senders.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
time

client_1

client_2

client_3

client_4

client_5

re
ce

iv
er

event
client-node-locked

client-node-unlocked

client-control-locked

client-control-unlocked

client-control-changed

client-node-dragged

client-node-created

client-node-removed

client-connection-created

client-connection-removed

Figure A.15.: The average duration of each event for each client. The client_1 and
client_2 were used as senders. Both senders also received the other
sender events. For the other clients, double the data could be collected
due to the two senders. Outliers were removed.

October 12, 2023 131

A. Appendix

Looking at the average durations, it can be confirmed that these are under the required
100 ms. Whether this is valid for all clients can not be said, as the results seem to
depend on the used client highly. The used software (e.g., operating system, browser
version or network driver version), as well as hardware components (e.g., network card
or WiFi chip), could influence the clients’ response times. This is supported by the fact
that client_3 and client_4 had the slowest hardware components, and client_1 and
client_4 the fastest. Additionally, the RTT is only an approximation of the duration.
Due to the acknowledgment event, the duration is always influenced by the time required
until the sender receives it. This can either reduce or increase the measured duration for
the initial event. While the network connection between the clients is throttled, it does
not simulate a real-world scenario where clients need to route through potential multiple
network devices. Finally, it can be said that the WebSocket server of PathoLearn is
capable of handling multiple events at once without performance degradation. Event
durations larger than 100 ms seem to be caused by the client side, not the server side.
To prove this, an additional test is required to determine the actual influence of different
clients and realistic network connections.

132 Jannes Neemann

Bibliography

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. URL: https://www.tensorflow.org/.

[AAE16] Nuha Alshuqayran, Nour Ali, and Roger Evans. A Systematic Mapping
Study in Microservice Architecture. In 2016 IEEE 9th International Con-
ference on Service-Oriented Computing and Applications (SOCA), pages
44–51, November 2016. doi:10.1109/SOCA.2016.15.

[AAH+22] Mohamed Amgad, Lamees A. Atteya, Hagar Hussein, Kareem Hosny Mo-
hammed, Ehab Hafiz, Maha A. T. Elsebaie, Ahmed M. Alhusseiny, Mo-
hamed Atef AlMoslemany, Abdelmagid M. Elmatboly, Philip A. Pap-
palardo, Rokia Adel Sakr, Pooya Mobadersany, Ahmad Rachid, Anas M.
Saad, Ahmad M. Alkashash, Inas A. Ruhban, Anas Alrefai, Nada M. El-
gazar, Ali Abdulkarim, Abo-Alela Farag, Amira Etman, Ahmed G. El-
saeed, Yahya Alagha, Yomna A. Amer, Ahmed M. Raslan, Menatalla K.
Nadim, Mai A. T. Elsebaie, Ahmed Ayad, Liza E. Hanna, Ahmed Gadal-
lah, Mohamed Elkady, Bradley Drumheller, David Jaye, David Manthey,
David A. Gutman, Habiba Elfandy, and Lee A. D. Cooper. NuCLS: A
scalable crowdsourcing, deep learning approach and dataset for nucleus
classification, localization and segmentation. GigaScience, 11:giac037, May
2022. URL: http://arxiv.org/abs/2102.09099, arXiv:2102.09099,
doi:10.1093/gigascience/giac037.

[AAK17] Rainer Alt, Gunnar Auth, and Christoph Kögler. Innovationsorien-
tiertes IT-Management mit DevOps. In Rainer Alt, Gunnar Auth, and

133

https://www.tensorflow.org/
https://doi.org/10.1109/SOCA.2016.15
http://arxiv.org/abs/2102.09099
http://arxiv.org/abs/2102.09099
https://doi.org/10.1093/gigascience/giac037

Bibliography

Christoph Kögler, editors, Innovationsorientiertes IT-Management mit De-
vOps: IT im Zeitalter von Digitalisierung und Software-defined Busi-
ness, essentials, pages 21–32. Springer Fachmedien, Wiesbaden, 2017.
URL: https://doi.org/10.1007/978-3-658-18704-0_3, doi:10.1007/
978-3-658-18704-0_3.

[AAS20] Arohan Ajit, Koustav Acharya, and Abhishek Samanta. A Review of Con-
volutional Neural Networks. In 2020 International Conference on Emerging
Trends in Information Technology and Engineering (Ic-ETITE), pages 1–5,
2020. doi:10.1109/ic-ETITE47903.2020.049.

[ACG+09] Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg,
José Marcelo Farfel, Renata E. L. Ferretti, Renata E. P. Leite, Wilson
Jacob Filho, Roberto Lent, and Suzana Herculano-Houzel. Equal num-
bers of neuronal and nonneuronal cells make the human brain an isomet-
rically scaled-up primate brain. 513(5):532–541, 2009. arXiv:19226510,
doi:10.1002/cne.21974.

[Ado21] Adoption stage of AI in healthcare in the EU 2021, 2021.
URL: https://www.statista.com/statistics/1312566/
adoption-stage-of-ai-in-healthcare-in-the-eu/.

[ale22] alexeyo26. News - Cognitive Toolkit - CNTK, August 2022. URL: https:
//learn.microsoft.com/en-us/cognitive-toolkit/news.

[Ama23] Amazon Simple Storage Service S3 – Cloud Online-Speicher, 2023. URL:
https://aws.amazon.com/de/s3/.

[AMAZ17] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understand-
ing of a convolutional neural network. In 2017 International Confer-
ence on Engineering and Technology (ICET), pages 1–6, 2017. doi:
10.1109/ICEngTechnol.2017.8308186.

[AŠ20] Viktar Atliha and Dmitrij Šešok. Comparison of VGG and ResNet used
as Encoders for Image Captioning. In 2020 IEEE Open Conference of
Electrical, Electronic and Information Sciences (eStream), pages 1–4, April
2020. doi:10.1109/eStream50540.2020.9108880.

[ASP17] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K. Panda. An In-
depth Performance Characterization of CPU- and GPU-based DNN Train-
ing on Modern Architectures. In Proceedings of the Machine Learning on
HPC Environments, MLHPC’17, pages 1–8, New York, NY, USA, Novem-
ber 2017. Association for Computing Machinery. URL: https://dl.acm.
org/doi/10.1145/3146347.3146356, doi:10.1145/3146347.3146356.

134 Jannes Neemann

https://doi.org/10.1007/978-3-658-18704-0_3
https://doi.org/10.1007/978-3-658-18704-0_3
https://doi.org/10.1007/978-3-658-18704-0_3
https://doi.org/10.1109/ic-ETITE47903.2020.049
http://arxiv.org/abs/19226510
https://doi.org/10.1002/cne.21974
https://www.statista.com/statistics/1312566/adoption-stage-of-ai-in-healthcare-in-the-eu/
https://www.statista.com/statistics/1312566/adoption-stage-of-ai-in-healthcare-in-the-eu/
https://learn.microsoft.com/en-us/cognitive-toolkit/news
https://learn.microsoft.com/en-us/cognitive-toolkit/news
https://aws.amazon.com/de/s3/
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/eStream50540.2020.9108880
https://dl.acm.org/doi/10.1145/3146347.3146356
https://dl.acm.org/doi/10.1145/3146347.3146356
https://doi.org/10.1145/3146347.3146356

Bibliography

[Ave23] Average monthly internet speed Germany 2023, 2023.
URL: https://www.statista.com/statistics/1338657/
average-internet-speed-germany/.

[Azu23] Azure Machine Learning: Machine-Learning-as-a-Service — Microsoft
Azure, 2023. URL: https://azure.microsoft.com/de-de/products/
machine-learning.

[BCG+21] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li,
Thomas Unterthiner, and Andreas Veit. Understanding Robustness of
Transformers for Image Classification. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 10211–10221. IEEE Com-
puter Society, October 2021. URL: https://www.computer.org/csdl/
proceedings-article/iccv/2021/281200k0211/1BmJS9EzORq, doi:10.
1109/ICCV48922.2021.01007.

[BD18] Ebubekir BUBER and Banu DIRI. Performance Analysis and CPU vs GPU
Comparison for Deep Learning. In 2018 6th International Conference on
Control Engineering & Information Technology (CEIT), pages 1–6, October
2018. doi:10.1109/CEIT.2018.8751930.

[Ben23] Benchmark performance vs. vanilla PyTorch — PyTorch Lightning 2.1.0dev
documentation, 2023. URL: https://lightning.ai/docs/pytorch/
latest/benchmarking/benchmarks.html.

[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake Vander-
Plas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL: http://github.com/
google/jax.

[Big23] BigML.com - machine learning made easy, 2023. URL: https://bigml.
com/.

[Bis94] Chris M. Bishop. Neural networks and their applications. 65(6):1803–1832,
1994. URL: https://aip.scitation.org/doi/10.1063/1.1144830, doi:
10.1063/1.1144830.

[Bui23] K6 - built-in metrics, 2023. URL: https://k6.io/docs/using-k6/
metrics/reference/.

[C+15] François Chollet et al. Keras. https://keras.io, 2015.

[CAB+21] Jerome Y. Cheng, Jacob T. Abel, Ulysses G. J. Balis, David S. Mc-
Clintock, and Liron Pantanowitz. Challenges in the Development, De-
ployment, and Regulation of Artificial Intelligence in Anatomic Pathol-
ogy. The American Journal of Pathology, 191(10):1684–1692, October

October 12, 2023 135

https://www.statista.com/statistics/1338657/average-internet-speed-germany/
https://www.statista.com/statistics/1338657/average-internet-speed-germany/
https://azure.microsoft.com/de-de/products/machine-learning
https://azure.microsoft.com/de-de/products/machine-learning
https://www.computer.org/csdl/proceedings-article/iccv/2021/281200k0211/1BmJS9EzORq
https://www.computer.org/csdl/proceedings-article/iccv/2021/281200k0211/1BmJS9EzORq
https://doi.org/10.1109/ICCV48922.2021.01007
https://doi.org/10.1109/ICCV48922.2021.01007
https://doi.org/10.1109/CEIT.2018.8751930
https://lightning.ai/docs/pytorch/latest/benchmarking/benchmarks.html
https://lightning.ai/docs/pytorch/latest/benchmarking/benchmarks.html
http://github.com/google/jax
http://github.com/google/jax
https://bigml.com/
https://bigml.com/
https://aip.scitation.org/doi/10.1063/1.1144830
https://doi.org/10.1063/1.1144830
https://doi.org/10.1063/1.1144830
https://k6.io/docs/using-k6/metrics/reference/
https://k6.io/docs/using-k6/metrics/reference/
https://keras.io

Bibliography

2021. URL: https://www.sciencedirect.com/science/article/pii/
S0002944020305083, doi:10.1016/j.ajpath.2020.10.018.

[Caf23] Caffe2, 2023. URL: http://caffe2.ai/.

[Cha23] Chatbot example - Rete.js, 2023. URL: https://retejs.org/examples/
chatbot.

[CHP21] Konstantinos Chatzilygeroudis, Ioannis Hatzilygeroudis, and Isidoros
Perikos. Machine Learning Basics. In Parisa Eslambolchilar, Andreas
Komninos, and Mark Dunlop, editors, Intelligent Computing for Interac-
tive System Design, pages 143–193. ACM, 1 edition, 2021. URL: https:
//dl.acm.org/doi/10.1145/3447404.3447414, doi:10.1145/3447404.
3447414.

[CJW+18] Hye Yoon Chang, Chan Kwon Jung, Junwoo Isaac Woo, Sanghun Lee,
Joonyoung Cho, Sun Woo Kim, and Tae-Yeong Kwak. Artificial Intelligence
in Pathology. Journal of Pathology and Translational Medicine, 53(1):1–
12, December 2018. URL: https://synapse.koreamed.org/articles/
1152382, doi:10.4132/jptm.2018.12.16.

[CKF11] Ronan Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
Matlab-like Environment for Machine Learning. In NIPS 2011,
2011. URL: https://www.semanticscholar.org/paper/Torch7%
3A-A-Matlab-like-Environment-for-Machine-Collobert-Kavukcuoglu/
3449b65008b27f6e60a73d80c1fd990f0481126b.

[Cle19] ClearML. Clearml - your entire mlops stack in one open-source tool, 2019.
Software available from http://github.com/allegroai/clearml. URL: https:
//clear.ml/.

[Cle23a] ClearML Agent — ClearML, 2023. URL: https://clear.ml/docs/
latest/docs/clearml_agent.

[Cle23b] ClearML Server — ClearML, 2023. URL: https://clear.ml/docs/
latest/docs/deploying_clearml/clearml_server/.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tian-
jun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexi-
ble and Efficient Machine Learning Library for Heterogeneous Distributed
Systems, December 2015. URL: http://arxiv.org/abs/1512.01274,
arXiv:1512.01274.

[Clo23] Cloud Storage, 2023. URL: https://cloud.google.com/storage?hl=de.

136 Jannes Neemann

https://www.sciencedirect.com/science/article/pii/S0002944020305083
https://www.sciencedirect.com/science/article/pii/S0002944020305083
https://doi.org/10.1016/j.ajpath.2020.10.018
http://caffe2.ai/
https://retejs.org/examples/chatbot
https://retejs.org/examples/chatbot
https://dl.acm.org/doi/10.1145/3447404.3447414
https://dl.acm.org/doi/10.1145/3447404.3447414
https://doi.org/10.1145/3447404.3447414
https://doi.org/10.1145/3447404.3447414
https://synapse.koreamed.org/articles/1152382
https://synapse.koreamed.org/articles/1152382
https://doi.org/10.4132/jptm.2018.12.16
https://www.semanticscholar.org/paper/Torch7%3A-A-Matlab-like-Environment-for-Machine-Collobert-Kavukcuoglu/3449b65008b27f6e60a73d80c1fd990f0481126b
https://www.semanticscholar.org/paper/Torch7%3A-A-Matlab-like-Environment-for-Machine-Collobert-Kavukcuoglu/3449b65008b27f6e60a73d80c1fd990f0481126b
https://www.semanticscholar.org/paper/Torch7%3A-A-Matlab-like-Environment-for-Machine-Collobert-Kavukcuoglu/3449b65008b27f6e60a73d80c1fd990f0481126b
https://clear.ml/
https://clear.ml/
https://clear.ml/docs/latest/docs/clearml_agent
https://clear.ml/docs/latest/docs/clearml_agent
https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server/
https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server/
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://cloud.google.com/storage?hl=de

Bibliography

[CM08] Ami Citri and Robert C. Malenka. Synaptic Plasticity: Multiple Forms,
Functions, and Mechanisms. 33(1):18–41, 2008. URL: https://www.
nature.com/articles/1301559, doi:10.1038/sj.npp.1301559.

[cml23] Cml · continuous machine learning, 2023. URL: https://cml.dev/doc.

[Col23] Collaborative Machine Learning development — MLReef, 2023. URL:
https://www.mlreef.com.

[Com23] The Complete Computer Vision Platform — Picsellia, 2023. URL: https:
//www.picsellia.com//.

[Con23a] Concepts — MLflow 2.5.0 documentation, 2023. URL: https://mlflow.
org/docs/latest/concepts.html#scalability-and-big-data.

[Con23b] MathJax Consortium. MathJax, 2023. URL: https://www.mathjax.org/.

[CPS13] Abhimanyu Chopra, Abhinav Prashar, and Chandresh Sain. Natural Lan-
guage Processing. 1(4), 2013.

[Dat23] Dataiku — Everyday AI, Extraordinary People, 2023. URL: https://www.
dataiku.com/.

[DCM+21] Andrea Duggento, Allegra Conti, Alessandro Mauriello, Maria Guerrisi,
and Nicola Toschi. Deep computational pathology in breast cancer.
Seminars in Cancer Biology, 72:226–237, July 2021. URL: https:
//www.sciencedirect.com/science/article/pii/S1044579X20301784,
doi:10.1016/j.semcancer.2020.08.006.

[Den12] Li Deng. The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web]. IEEE Signal Processing Magazine,
29(6):141–142, November 2012. doi:10.1109/MSP.2012.2211477.

[Dev23a] Developer tools for Machine Learning — Iterative, 2023. URL: https:
//iterative.ai/.

[Dev23b] TensorFlow Developers. TensorFlow. Zenodo, July 2023. URL: https:
//zenodo.org/record/8118033, doi:10.5281/zenodo.8118033.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization. The Journal of
Machine Learning Research, 12(null):2121–2159, July 2011. URL: https:
//dl.acm.org/doi/10.5555/1953048.2021068.

[DPS+21] Hulin Dai, Xuan Peng, Xuanhua Shi, Ligang He, Qian Xiong, and Hai
Jin. Reveal training performance mystery between TensorFlow and Py-
Torch in the single GPU environment. Science China Information Sciences,
65(1):112103, December 2021. doi:10.1007/s11432-020-3182-1.

October 12, 2023 137

https://www.nature.com/articles/1301559
https://www.nature.com/articles/1301559
https://doi.org/10.1038/sj.npp.1301559
https://cml.dev/doc
https://www.mlreef.com
https://www.picsellia.com//
https://www.picsellia.com//
https://mlflow.org/docs/latest/concepts.html#scalability-and-big-data
https://mlflow.org/docs/latest/concepts.html#scalability-and-big-data
https://www.mathjax.org/
https://www.dataiku.com/
https://www.dataiku.com/
https://www.sciencedirect.com/science/article/pii/S1044579X20301784
https://www.sciencedirect.com/science/article/pii/S1044579X20301784
https://doi.org/10.1016/j.semcancer.2020.08.006
https://doi.org/10.1109/MSP.2012.2211477
https://iterative.ai/
https://iterative.ai/
https://zenodo.org/record/8118033
https://zenodo.org/record/8118033
https://doi.org/10.5281/zenodo.8118033
https://dl.acm.org/doi/10.5555/1953048.2021068
https://dl.acm.org/doi/10.5555/1953048.2021068
https://doi.org/10.1007/s11432-020-3182-1

Bibliography

[dvc23] Data version control · dvc, 2023. URL: https://dvc.org/doc.

[Eag17] Eager Execution: An imperative, define-by-run interface to Tensor-
Flow, October 2017. URL: https://ai.googleblog.com/2017/10/
eager-execution-imperative-define-by.html?m=1.

[Eas23] Easily manage, deploy and monitor Machine Learning models. — craft-
works’ navio, 2023. URL: https://www.craftworks.ai/navio.

[EGHS16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano.
DevOps. IEEE Software, 33(3):94–100, May 2016. doi:10.1109/MS.2016.
68.

[Fas23] FastAPI, 2023. URL: https://fastapi.tiangolo.com/.

[FLHI+18] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Belle-
mare, and Joelle Pineau. An Introduction to Deep Reinforcement Learn-
ing. 11(3-4):219–354, 2018. URL: http://arxiv.org/abs/1811.12560,
arXiv:1811.12560, doi:10.1561/2200000071.

[FT19] William Falcon and The PyTorch Lightning team. PyTorch Lightning,
March 2019. URL: https://github.com/Lightning-AI/lightning, doi:
10.5281/zenodo.3828935.

[Ful23] Full Stack Machine Learning Operating System — cnvrg.io, 2023. URL:
https://cnvrg.io/.

[Fun18] William K. Funkhouser. Pathology. Molecular Pathology, pages
217–229, 2018. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7150310/, doi:10.1016/B978-0-12-802761-5.00011-0.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion, October 2014. URL: http://arxiv.org/abs/1311.2524, arXiv:
1311.2524, doi:10.48550/arXiv.1311.2524.

[GHPBB21] Christiane Gresse von Wangenheim, Jean C. R. Hauck, Fernando S.
Pacheco, and Matheus F. Bertonceli Bueno. Visual tools for teaching
machine learning in K-12: A ten-year systematic mapping. Education
and Information Technologies, 26(5):5733–5778, September 2021. doi:
10.1007/s10639-021-10570-8.

[Gir15] Ross Girshick. Fast R-CNN, September 2015. URL: http://arxiv.org/
abs/1504.08083, arXiv:1504.08083.

138 Jannes Neemann

https://dvc.org/doc
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html?m=1
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html?m=1
https://www.craftworks.ai/navio
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/MS.2016.68
https://fastapi.tiangolo.com/
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
https://doi.org/10.1561/2200000071
https://github.com/Lightning-AI/lightning
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://cnvrg.io/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150310/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150310/
https://doi.org/10.1016/B978-0-12-802761-5.00011-0
http://www.deeplearningbook.org
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://doi.org/10.48550/arXiv.1311.2524
https://doi.org/10.1007/s10639-021-10570-8
https://doi.org/10.1007/s10639-021-10570-8
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083

Bibliography

[GLGN+08] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim
Hardwick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov.
Parallel Computing Experiences with CUDA. IEEE Micro, 28(4):13–27,
July 2008. doi:10.1109/MM.2008.57.

[GM04] Kalanit Grill-Spector and Rafael Malach. The Human Visual Cortex. An-
nual Review of Neuroscience, 27(1):649–677, 2004. doi:10.1146/annurev.
neuro.27.070203.144220.

[Gol19] Sunila Gollapudi. Artificial Intelligence and Computer Vision. In Sunila
Gollapudi, editor, Learn Computer Vision Using OpenCV: With Deep
Learning CNNs and RNNs, pages 1–29. Apress, 2019. doi:10.1007/
978-1-4842-4261-2_1.

[Goo23] Google Trends, 2023. URL: https://trends.google.com/
trends/explore?date=today%205-y&q=%2Fg%2F11bwp1s2k3,%2Fg%
2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11g6ym8nbt&hl=de.

[GZM20] Christian Garbin, Xingquan Zhu, and Oge Marques. Dropout vs. batch
normalization: An empirical study of their impact to deep learning. Mul-
timedia Tools and Applications, 79(19):12777–12815, May 2020. doi:
10.1007/s11042-019-08453-9.

[Gé19] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn,
Keras, and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems. O’Reilly Media, Inc, second edition
edition, 2019. URL: https://www.oreilly.com/library/view/
hands-on-machine-learning/9781492032632/.

[HCS21] Yue Hu, Cheng-Huan Chen, and Chien-Yuan Su. Exploring the Effec-
tiveness and Moderators of Block-Based Visual Programming on Student
Learning: A Meta-Analysis. Journal of Educational Computing Research,
58(8):1467–1493, January 2021. doi:10.1177/0735633120945935.

[Heb49] Donald Olding Hebb. The Organization of Behavior: A Neuropsychological
Theory. Wiley, 1949. URL: https://pure.mpg.de/rest/items/item_
2346268_3/component/file_2346267/content.

[HGDG18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-
CNN, January 2018. URL: http://arxiv.org/abs/1703.06870, arXiv:
1703.06870, doi:10.48550/arXiv.1703.06870.

[HM22] Nipuni Hewage and Dulani Meedeniya. Machine Learning Operations: A
Survey on MLOps Tool Support. 2022. URL: http://arxiv.org/abs/
2202.10169, arXiv:2202.10169, doi:10.48550/arXiv.2202.10169.

October 12, 2023 139

https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1146/annurev.neuro.27.070203.144220
https://doi.org/10.1146/annurev.neuro.27.070203.144220
https://doi.org/10.1007/978-1-4842-4261-2_1
https://doi.org/10.1007/978-1-4842-4261-2_1
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11bwp1s2k3,%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11g6ym8nbt&hl=de
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11bwp1s2k3,%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11g6ym8nbt&hl=de
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11bwp1s2k3,%2Fg%2F11gd3905v1,%2Fg%2F11c1r2rvnp,%2Fg%2F11g6ym8nbt&hl=de
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1007/s11042-019-08453-9
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://doi.org/10.1177/0735633120945935
https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://doi.org/10.48550/arXiv.1703.06870
http://arxiv.org/abs/2202.10169
http://arxiv.org/abs/2202.10169
http://arxiv.org/abs/2202.10169
https://doi.org/10.48550/arXiv.2202.10169

Bibliography

[HPS20] Matthew G. Hanna, Anil Parwani, and Sahussapont Joseph Sirintra-
pun. Whole Slide Imaging: Technology and Applications. Advances
In Anatomic Pathology, 27(4):251–259, July 2020. doi:10.1097/PAP.
0000000000000273.

[Hub59] D. H. Hubel. Single unit activity in striate cortex of unrestrained
cats. 147(2):226–238.2, 1959. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1357023/, arXiv:14403678.

[HW59] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the
cat’s striate cortex. 148(3):574–591, 1959. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC1363130/, arXiv:14403679.

[HZJM22] Khoa Ho, Hui Zhao, Adwait Jog, and Saraju Mohanty. Improving GPU
Throughput through Parallel Execution Using Tensor Cores and CUDA
Cores. In 2022 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 223–228, July 2022. doi:10.1109/ISVLSI54635.2022.
00051.

[HZRS14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Visual Recognition. vol-
ume 8691, pages 346–361. 2014. URL: http://arxiv.org/abs/1406.4729,
arXiv:1406.4729, doi:10.1007/978-3-319-10578-9_23.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition, December 2015. URL: http://
arxiv.org/abs/1512.03385, arXiv:1512.03385, doi:10.48550/arXiv.
1512.03385.

[Iak23] Pavel Iakubovskii. Qubvel/segmentation models.pytorch, September 2023.
URL: https://github.com/qubvel/segmentation_models.pytorch.

[Inc23a] Iterative Inc. Iterative Studio, 2023. URL: https://studio.iterative.
ai.

[Inc23b] MinIO Inc. MinIO — High Performance, Kubernetes Native Object Stor-
age, 2023. URL: https://min.io.

[Int12] Introduction to Querying Metadata and Artifacts - Polyaxon quick start
tutorial - Core Concepts, April 2012. URL: https://polyaxon.com/docs/
intro/query-metadata-artifacts/.

[IS15a] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, March 2015.
URL: http://arxiv.org/abs/1502.03167, arXiv:1502.03167.

140 Jannes Neemann

https://doi.org/10.1097/PAP.0000000000000273
https://doi.org/10.1097/PAP.0000000000000273
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357023/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357023/
http://arxiv.org/abs/14403678
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/
http://arxiv.org/abs/14403679
https://doi.org/10.1109/ISVLSI54635.2022.00051
https://doi.org/10.1109/ISVLSI54635.2022.00051
http://arxiv.org/abs/1406.4729
http://arxiv.org/abs/1406.4729
https://doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
https://github.com/qubvel/segmentation_models.pytorch
https://studio.iterative.ai
https://studio.iterative.ai
https://min.io
https://polyaxon.com/docs/intro/query-metadata-artifacts/
https://polyaxon.com/docs/intro/query-metadata-artifacts/
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

Bibliography

[IS15b] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, March 2015.
URL: http://arxiv.org/abs/1502.03167, arXiv:1502.03167, doi:10.
48550/arXiv.1502.03167.

[IZG18] Andrej Ilievski, Vladimir Zdraveski, and Marjan Gusev. How CUDA Powers
the Machine Learning Revolution. In 2018 26th Telecommunications Forum
(TELFOR), pages 420–425, November 2018. doi:10.1109/TELFOR.2018.
8611982.

[JBS15] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token
(JWT). RFC 7519, May 2015. URL: https://www.rfc-editor.org/
info/rfc7519, doi:10.17487/RFC7519.

[JM16] Andrew Janowczyk and Anant Madabhushi. Deep learning for digital
pathology image analysis: A comprehensive tutorial with selected use cases.
Journal of Pathology Informatics, 7:29, 2016. doi:10.4103/2153-3539.
186902.

[JNS22] Biswajit Jena, Gopal Krishna Nayak, and Sanjay Saxena. Convolutional
neural network and its pretrained models for image classification and object
detection: A survey. Concurrency and Computation: Practice and Experi-
ence, 34(6):e6767, 2022. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.6767.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convo-
lutional Architecture for Fast Feature Embedding, June 2014. URL: http:
//arxiv.org/abs/1408.5093, arXiv:1408.5093, doi:10.48550/arXiv.
1408.5093.

[K6D23] K6 Documentation, 2023. URL: https://k6.io/docs.

[Kan03] Laveen N. Kanal. Perceptron. In Encyclopedia of Computer Science, pages
1383–1385. John Wiley and Sons Ltd., 2003. URL: https://dl.acm.org/
doi/book/10.5555/1074100.

[Kat23] Katonic MLOps Platform, 2023. URL: https://katonic.ai/.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization, January 2017. URL: http://arxiv.org/abs/1412.6980,
arXiv:1412.6980, doi:10.48550/arXiv.1412.6980.

[KBKT17] Brady Kieffer, Morteza Babaie, Shivam Kalra, and H. R. Tizhoosh. Con-
volutional neural networks for histopathology image classification: Train-
ing vs. Using pre-trained networks. In 2017 Seventh International Confer-
ence on Image Processing Theory, Tools and Applications (IPTA), pages

October 12, 2023 141

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.1109/TELFOR.2018.8611982
https://doi.org/10.1109/TELFOR.2018.8611982
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.17487/RFC7519
https://doi.org/10.4103/2153-3539.186902
https://doi.org/10.4103/2153-3539.186902
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6767
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6767
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
https://doi.org/10.48550/arXiv.1408.5093
https://doi.org/10.48550/arXiv.1408.5093
https://k6.io/docs
https://dl.acm.org/doi/book/10.5555/1074100
https://dl.acm.org/doi/book/10.5555/1074100
https://katonic.ai/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980

Bibliography

1–6, November 2017. URL: https://ieeexplore.ieee.org/document/
8310149.

[Ker18] Michael Kerres. Mediendidaktik: Konzeption und Entwicklung dig-
italer Lernangebote. In Mediendidaktik. De Gruyter Oldenbourg,
March 2018. URL: https://www.degruyter.com/document/doi/10.
1515/9783110456837/html?lang=de, doi:10.1515/9783110456837.

[Ker23] Keras: The high-level API for TensorFlow — TensorFlow Core, 2023. URL:
https://www.tensorflow.org/guide/keras.

[Key23] Keycloak, 2023. URL: https://www.keycloak.org/.

[KKH23] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine Learn-
ing Operations (MLOps): Overview, Definition, and Architecture. IEEE
Access, 11:31866–31879, 2023. doi:10.1109/ACCESS.2023.3262138.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neu-
ral Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL: https://papers.nips.cc/paper_files/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[Kuv22] Prajot Kuvalekar. Answer to ”padding=’same’ conversion to PyTorch
padding=#”, August 2022. URL: https://stackoverflow.com/a/
73332370.

[Lau23] Launching an On-Premise Cluster — Ray 2.6.1, 2023. URL:
https://docs.ray.io/en/latest/cluster/vms/user-guides/
launching-clusters/on-premises.html#on-prem.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, November 1998. doi:10.1109/5.726791.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Na-
ture, 521(7553):436–444, May 2015. URL: https://www.nature.com/
articles/nature14539, doi:10.1038/nature14539.

[LBOM12] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient BackProp. In Grégoire Montavon, Geneviève B. Orr, and Klaus-
Robert Müller, editors, Neural Networks: Tricks of the Trade: Second Edi-
tion, Lecture Notes in Computer Science, pages 9–48. Springer, Berlin,
Heidelberg, 2012. doi:10.1007/978-3-642-35289-8_3.

[Lea23] Lml - artificiai intelligence made eas, 2023. URL: https://web.
learningml.org/en/home-spanish-en-translation/.

142 Jannes Neemann

https://ieeexplore.ieee.org/document/8310149
https://ieeexplore.ieee.org/document/8310149
https://www.degruyter.com/document/doi/10.1515/9783110456837/html?lang=de
https://www.degruyter.com/document/doi/10.1515/9783110456837/html?lang=de
https://doi.org/10.1515/9783110456837
https://www.tensorflow.org/guide/keras
https://www.keycloak.org/
https://doi.org/10.1109/ACCESS.2023.3262138
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://stackoverflow.com/a/73332370
https://stackoverflow.com/a/73332370
https://docs.ray.io/en/latest/cluster/vms/user-guides/launching-clusters/on-premises.html#on-prem
https://docs.ray.io/en/latest/cluster/vms/user-guides/launching-clusters/on-premises.html#on-prem
https://doi.org/10.1109/5.726791
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-35289-8_3
https://web.learningml.org/en/home-spanish-en-translation/
https://web.learningml.org/en/home-spanish-en-translation/

Bibliography

[LG00] S. Lawrence and C.L. Giles. Overfitting and neural networks: Conjugate
gradient and backpropagation. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, vol-
ume 1, pages 114–119 vol.1, July 2000. doi:10.1109/IJCNN.2000.857823.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization,
January 2019. URL: http://arxiv.org/abs/1711.05101, arXiv:1711.
05101, doi:10.48550/arXiv.1711.05101.

[Lig23] LightningDataModule — PyTorch Lightning 2.0.9 documentation,
2023. URL: https://lightning.ai/docs/pytorch/stable/data/
datamodule.html.

[Lju23] Bioinformatics Laboratory Ljubljana, University of. Data Mining, 2023.
URL: https://orangedatamining.com/.

[LLR+22] Xintong Li, Chen Li, Md Mamunur Rahaman, Hongzan Sun, Xiaoqi Li,
Jian Wu, Yudong Yao, and Marcin Grzegorzek. A comprehensive review
of computer-aided whole-slide image analysis: From datasets to feature
extraction, segmentation, classification and detection approaches. Arti-
ficial Intelligence Review, 55(6):4809–4878, August 2022. doi:10.1007/
s10462-021-10121-0.

[Log23] Logger — ClearML, 2023. URL: https://clear.ml/docs/latest/docs/
fundamentals/logger/.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolu-
tional Networks for Semantic Segmentation, March 2015. URL: http:
//arxiv.org/abs/1411.4038, arXiv:1411.4038, doi:10.48550/arXiv.
1411.4038.

[LSJR16] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht.
Gradient Descent Only Converges to Minimizers. In Conference on
Learning Theory, pages 1246–1257. PMLR, June 2016. URL: https:
//proceedings.mlr.press/v49/lee16.html.

[LSM+20] Timothy P. Lillicrap, Adam Santoro, Luke Marris, Colin J. Akerman, and
Geoffrey Hinton. Backpropagation and the brain. Nature Reviews Neu-
roscience, 21(6):335–346, June 2020. URL: https://www.nature.com/
articles/s41583-020-0277-3, doi:10.1038/s41583-020-0277-3.

[Mac23a] Machine Learning Operations (MLOps), 2023. URL: https://www.
datarobot.com/platform/mlops/.

[Mac23b] Machine Learning – Amazon Web Services, 2023. URL: https://aws.
amazon.com/de/sagemaker/.

October 12, 2023 143

https://doi.org/10.1109/IJCNN.2000.857823
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://lightning.ai/docs/pytorch/stable/data/datamodule.html
https://lightning.ai/docs/pytorch/stable/data/datamodule.html
https://orangedatamining.com/
https://doi.org/10.1007/s10462-021-10121-0
https://doi.org/10.1007/s10462-021-10121-0
https://clear.ml/docs/latest/docs/fundamentals/logger/
https://clear.ml/docs/latest/docs/fundamentals/logger/
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://doi.org/10.48550/arXiv.1411.4038
https://doi.org/10.48550/arXiv.1411.4038
https://proceedings.mlr.press/v49/lee16.html
https://proceedings.mlr.press/v49/lee16.html
https://www.nature.com/articles/s41583-020-0277-3
https://www.nature.com/articles/s41583-020-0277-3
https://doi.org/10.1038/s41583-020-0277-3
https://www.datarobot.com/platform/mlops/
https://www.datarobot.com/platform/mlops/
https://aws.amazon.com/de/sagemaker/
https://aws.amazon.com/de/sagemaker/

Bibliography

[MF11] Alexey Melnikov and Ian Fette. The WebSocket Protocol. Request for Com-
ments RFC 6455, Internet Engineering Task Force, December 2011. URL:
https://datatracker.ietf.org/doc/rfc6455, doi:10.17487/RFC6455.

[Mic23] Microsoft/CNTK. Microsoft, July 2023. URL: https://github.com/
microsoft/CNTK.

[Mid23] Middleware - FastAPI, 2023. URL: https://fastapi.tiangolo.com/
tutorial/middleware/.

[Mil68] Robert B. Miller. Response time in man-computer conversational trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Com-
puter Conference, Part I, AFIPS ’68 (Fall, Part I), pages 267–277, New
York, NY, USA, December 1968. Association for Computing Machin-
ery. URL: https://dl.acm.org/doi/10.1145/1476589.1476628, doi:
10.1145/1476589.1476628.

[MIL17] MILA and the future of Theano, 2017. URL: https://groups.google.
com/g/theano-users/c/7Poq8BZutbY/m/rNCIfvAEAwAJ.

[Min23] Mindspore-ai/mindspore. MindSpore, July 2023. URL: https://github.
com/mindspore-ai/mindspore.

[mle23] Mlem · simplifying machine learning model deployment, 2023. URL: https:
//mlem.ai/doc.

[MLf23] MLflow - A platform for the machine learning lifecycle, 2023. URL: https:
//mlflow.org/.

[MLO23] MLOps Platform for EDGE AI and Enterprise AI, 2023. URL: https:
//www.akira.ai.

[Mod23a] ModelArts AI Development Platform — Huawei Cloud, 2023. URL: https:
//www.huaweicloud.com/intl/en-us/product/modelarts.html.

[Mod23b] Models and pre-trained weights — Torchvision 0.15 documentation, 2023.
URL: https://pytorch.org/vision/stable/models.html.

[Mön23] Jens Mönig. Snap! Build Your Own Blocks, July 2023. URL: https:
//github.com/jmoenig/Snap.

[Mou18] Mourad Mourafiq. Polyaxon: Cloud native machine learning platform.
Web page, 2018. Software available from polyaxon.com. URL: https:
//github.com/polyaxon/polyaxon.

144 Jannes Neemann

https://datatracker.ietf.org/doc/rfc6455
https://doi.org/10.17487/RFC6455
https://github.com/microsoft/CNTK
https://github.com/microsoft/CNTK
https://fastapi.tiangolo.com/tutorial/middleware/
https://fastapi.tiangolo.com/tutorial/middleware/
https://dl.acm.org/doi/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://groups.google.com/g/theano-users/c/7Poq8BZutbY/m/rNCIfvAEAwAJ
https://groups.google.com/g/theano-users/c/7Poq8BZutbY/m/rNCIfvAEAwAJ
https://github.com/mindspore-ai/mindspore
https://github.com/mindspore-ai/mindspore
https://mlem.ai/doc
https://mlem.ai/doc
https://mlflow.org/
https://mlflow.org/
https://www.akira.ai
https://www.akira.ai
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://pytorch.org/vision/stable/models.html
https://github.com/jmoenig/Snap
https://github.com/jmoenig/Snap
https://github.com/polyaxon/polyaxon
https://github.com/polyaxon/polyaxon

Bibliography

[MRL+23] Sergio Moreschi, Gilberto Recupito, Valentina Lenarduzzi, Fabio Palomba,
David Hastbacka, and Davide Taibi. Toward End-to-End MLOps Tools
Map: A Preliminary Study based on a Multivocal Literature Review, April
2023. URL: http://arxiv.org/abs/2304.03254, arXiv:2304.03254.

[MRR+10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. The Scratch Programming Language and Environment.
ACM Transactions on Computing Education (TOCE), 10:16, November
2010. doi:10.1145/1868358.1868363.

[NCN+22] Ovidiu-Constantin Novac, Mihai Cristian Chirodea, Cornelia Mihaela No-
vac, Nicu Bizon, Mihai Oproescu, Ovidiu Petru Stan, and Cornelia Emilia
Gordan. Analysis of the Application Efficiency of TensorFlow and Py-
Torch in Convolutional Neural Network. Sensors, 22(22):8872, January
2022. URL: https://www.mdpi.com/1424-8220/22/22/8872, doi:10.
3390/s22228872.

[NDB+19] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro
López Garćıa, Ignacio Heredia, Peter Maĺık, and Ladislav Hluchý. Ma-
chine Learning and Deep Learning frameworks and libraries for large-scale
data mining: A survey. Artificial Intelligence Review, 52(1):77–124, June
2019. doi:10.1007/s10462-018-09679-z.

[Nee21] Jannes Neemann. Entwicklung einer Lernsoftware für das Fach Patholo-
gie. Bachelor Thesis, 2021. URL: http://nbn-resolving.de/urn:nbn:
de:bsz:960-opus4-19729, doi:10.25968/opus-1972.

[Nor23] Normalize — Torchvision 0.15 documentation, 2023. URL:
https://pytorch.org/vision/stable/generated/torchvision.
transforms.Normalize.html.

[ONN23] ONNX — Home, 2023. URL: https://onnx.ai/.

[Ory23] Ory - API-first Identity Management, Authentication and Authorization.
For Secure, Global, GDPR-compliant Apps — Ory, 2023. URL: https:
//www.ory.sh/.

[OSP+22] Parita Oza, Paawan Sharma, Samir Patel, Festus Adedoyin, and Alessan-
dro Bruno. Image Augmentation Techniques for Mammogram Analysis.
Journal of Imaging, 8(5):141, May 2022. URL: https://www.mdpi.com/
2313-433X/8/5/141, doi:10.3390/jimaging8050141.

[Pad23] PaddlePaddle/Paddle. PaddlePaddle, July 2023. URL: https://github.
com/PaddlePaddle/Paddle.

[Pap23a] Papers with Code - About Papers With Code, 2023. URL: https:
//paperswithcode.com/about.

October 12, 2023 145

http://arxiv.org/abs/2304.03254
http://arxiv.org/abs/2304.03254
https://doi.org/10.1145/1868358.1868363
https://www.mdpi.com/1424-8220/22/22/8872
https://doi.org/10.3390/s22228872
https://doi.org/10.3390/s22228872
https://doi.org/10.1007/s10462-018-09679-z
http://nbn-resolving.de/urn:nbn:de:bsz:960-opus4-19729
http://nbn-resolving.de/urn:nbn:de:bsz:960-opus4-19729
https://doi.org/10.25968/opus-1972
https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html
https://onnx.ai/
https://www.ory.sh/
https://www.ory.sh/
https://www.mdpi.com/2313-433X/8/5/141
https://www.mdpi.com/2313-433X/8/5/141
https://doi.org/10.3390/jimaging8050141
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://paperswithcode.com/about
https://paperswithcode.com/about

Bibliography

[Pap23b] Papers with Code - Papers With Code : Trends, 2023. URL: https:
//paperswithcode.com/trends.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL: https://proceedings.neurips.cc/paper_files/paper/
2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[Plu23] Plugin system - Rete.js, 2023. URL: https://retejs.org/docs/
concepts/plugin-system.

[Pol12] Polyaxon management - Model Registry, April 2012. URL: https://
polyaxon.com/docs/management/model-registry/.

[Pre19] Preferred Networks Migrates its Deep Learning Research Platform to
PyTorch, December 2019. URL: https://www.preferred.jp/en/news/
pr20191205/.

[Pro23a] Productionizing and scaling Python ML workloads simply, 2023. URL:
https://www.ray.io/.

[Pro23b] Produktionsreife Container-Orchestrierung, 2023. URL: https://
kubernetes.io/de/.

[Pro23c] Projects — ClearML, 2023. URL: https://clear.ml/docs/latest/docs/
fundamentals/projects.

[Pus23a] Pusher — Leader In Realtime Technologies, 2023. URL: https://pusher.
com/.

[Pus23b] Pusher. Pusher Channels Protocol, 2023. URL: https:
//pusher.com/docs/channels/library_auth_reference/
pusher-websockets-protocol/undefined/docs/channels/library_
auth_reference/pusher-websockets-protocol/.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algo-
rithms. Neural Networks, 12(1):145–151, January 1999. URL: https:
//www.sciencedirect.com/science/article/pii/S0893608098001166,
doi:10.1016/S0893-6080(98)00116-6.

[Ray23a] Ray Dashboard — Ray 2.6.1, 2023. URL: https://docs.ray.io/en/
latest/ray-observability/getting-started.html.

146 Jannes Neemann

https://paperswithcode.com/trends
https://paperswithcode.com/trends
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://retejs.org/docs/concepts/plugin-system
https://retejs.org/docs/concepts/plugin-system
https://polyaxon.com/docs/management/model-registry/
https://polyaxon.com/docs/management/model-registry/
https://www.preferred.jp/en/news/pr20191205/
https://www.preferred.jp/en/news/pr20191205/
https://www.ray.io/
https://kubernetes.io/de/
https://kubernetes.io/de/
https://clear.ml/docs/latest/docs/fundamentals/projects
https://clear.ml/docs/latest/docs/fundamentals/projects
https://pusher.com/
https://pusher.com/
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol/undefined/docs/channels/library_auth_reference/pusher-websockets-protocol/
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol/undefined/docs/channels/library_auth_reference/pusher-websockets-protocol/
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol/undefined/docs/channels/library_auth_reference/pusher-websockets-protocol/
https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol/undefined/docs/channels/library_auth_reference/pusher-websockets-protocol/
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://doi.org/10.1016/S0893-6080(98)00116-6
https://docs.ray.io/en/latest/ray-observability/getting-started.html
https://docs.ray.io/en/latest/ray-observability/getting-started.html

Bibliography

[Ray23b] Ray Data: Scalable Datasets for ML — Ray 2.6.1, 2023. URL: https:
//docs.ray.io/en/latest/data/data.html.

[Ray23c] Ray Serve: Scalable and Programmable Serving — Ray 2.6.1, 2023. URL:
https://docs.ray.io/en/latest/serve/index.html.

[Ray23d] Ray Train: Scalable Model Training — Ray 2.6.1, 2023. URL: https:
//docs.ray.io/en/latest/train/train.html.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection, May 2016. URL:
http://arxiv.org/abs/1506.02640, arXiv:1506.02640.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge, January 2015. URL: http://arxiv.org/abs/
1409.0575, arXiv:1409.0575, doi:10.48550/arXiv.1409.0575.

[Ret23] Rete.js - JavaScript framework for visual programming, 2023. URL: https:
//retejs.org/.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation, May 2015. URL:
http://arxiv.org/abs/1505.04597, arXiv:1505.04597.

[RHGS16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal Net-
works, January 2016. URL: http://arxiv.org/abs/1506.01497, arXiv:
1506.01497.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. 323(6088):533–536, 1986. URL:
https://www.nature.com/articles/323533a0, doi:10.1038/323533a0.

[RM51] Herbert Robbins and Sutton Monro. A Stochastic Approxima-
tion Method. The Annals of Mathematical Statistics, 22(3):400–
407, September 1951. URL: https://projecteuclid.org/
journals/annals-of-mathematical-statistics/volume-22/issue-3/
A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.
full, doi:10.1214/aoms/1177729586.

[RM87] David E. Rumelhart and James L. McClelland. Learning Internal Repre-
sentations by Error Propagation. In Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition: Foundations, pages 318–
362. MIT Press, 1987. URL: https://ieeexplore.ieee.org/document/
6302929.

October 12, 2023 147

https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/train/train.html
https://docs.ray.io/en/latest/train/train.html
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.48550/arXiv.1409.0575
https://retejs.org/
https://retejs.org/
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://www.nature.com/articles/323533a0
https://doi.org/10.1038/323533a0
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://doi.org/10.1214/aoms/1177729586
https://ieeexplore.ieee.org/document/6302929
https://ieeexplore.ieee.org/document/6302929

Bibliography

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information stor-
age and organization in the brain. 65(6):386–408, 1958. arXiv:13602029,
doi:10.1037/h0042519.

[RPC+22] Gilberto Recupito, Fabiano Pecorelli, Gemma Catolino, Sergio Moreschini,
Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri. A Multivocal
Literature Review of MLOps Tools and Features. In 2022 48th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 84–91, August 2022. doi:10.1109/SEAA56994.2022.00021.

[RRS+22] João Pedro Mazuco Rodriguez, Rubens Rodriguez, Vitor Werneck Krauss
Silva, Felipe Campos Kitamura, Gustavo Cesar Antônio Corradi, Ana
Carolina Bertoletti de Marchi, and Rafael Rieder. Artificial intelligence
as a tool for diagnosis in digital pathology whole slide images: A sys-
tematic review. Journal of Pathology Informatics, 13:100138, January
2022. URL: https://www.sciencedirect.com/science/article/pii/
S2153353922007325, doi:10.1016/j.jpi.2022.100138.

[Sah20] Shagan Sah. Machine Learning: A Review of Learning Types,
2020. URL: https://www.preprints.org/manuscript/202007.0230/v1,
arXiv:2020070230, doi:10.20944/preprints202007.0230.v1.

[Sel23] Self-hosted Runners, 2023. URL: https://cml.dev/doc/
self-hosted-runners.

[Ser23a] Integrations - serving, 2023. URL: https://polyaxon.com/
integrations/serving/.

[Ser23b] Serving — ClearML, 2023. URL: https://clear.ml/docs/latest/docs/
clearml_serving/.

[SFH21] Ola Spjuth, Jens Frid, and Andreas Hellander. The machine learning
life cycle and the cloud: Implications for drug discovery. Expert Opin-
ion on Drug Discovery, 16(9):1071–1079, September 2021. doi:10.1080/
17460441.2021.1932812.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, January 2014. URL: http://jmlr.org/papers/v15/
srivastava14a.html.

[Sim23] Simplified stock exchange as pubsub benchmark. uNetworking AB, August
2023. URL: https://github.com/uNetworking/pubsub-benchmark.

148 Jannes Neemann

http://arxiv.org/abs/13602029
https://doi.org/10.1037/h0042519
https://doi.org/10.1109/SEAA56994.2022.00021
https://www.sciencedirect.com/science/article/pii/S2153353922007325
https://www.sciencedirect.com/science/article/pii/S2153353922007325
https://doi.org/10.1016/j.jpi.2022.100138
https://www.preprints.org/manuscript/202007.0230/v1
http://arxiv.org/abs/2020070230
https://doi.org/10.20944/preprints202007.0230.v1
https://cml.dev/doc/self-hosted-runners
https://cml.dev/doc/self-hosted-runners
https://polyaxon.com/integrations/serving/
https://polyaxon.com/integrations/serving/
https://clear.ml/docs/latest/docs/clearml_serving/
https://clear.ml/docs/latest/docs/clearml_serving/
https://doi.org/10.1080/17460441.2021.1932812
https://doi.org/10.1080/17460441.2021.1932812
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://github.com/uNetworking/pubsub-benchmark

Bibliography

[SIVA16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi.
Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning, August 2016. URL: http://arxiv.org/abs/1602.07261,
arXiv:1602.07261.

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper with Convolutions, September 2014. URL:
http://arxiv.org/abs/1409.4842, arXiv:1409.4842.

[SNKP22] Georgios Symeonidis, Evangelos Nerantzis, Apostolos Kazakis, and
George A. Papakostas. MLOps - Definitions, Tools and Challenges. In 2022
IEEE 12th Annual Computing and Communication Workshop and Confer-
ence (CCWC), pages 0453–0460, January 2022. doi:10.1109/CCWC54503.
2022.9720902.

[Soc23] Socket.IO, 2023. URL: https://socket.io/.

[Sok23] Soketi, 2023. URL: https://docs.soketi.app/.

[SOM11] Eric Stratmann, John Ousterhout, and Sameer Madan. Integrating long
polling with an MVC framework. In Proceedings of the 2nd USENIX Con-
ference on Web Application Development, WebApps’11, page 10, USA, June
2011. USENIX Association. URL: https://dl.acm.org/doi/10.5555/
2002168.2002178.

[SOPH16] Fabio A. Spanhol, Luiz S. Oliveira, Caroline Petitjean, and Laurent Heutte.
A Dataset for Breast Cancer Histopathological Image Classification. IEEE
Transactions on Biomedical Engineering, 63(7):1455–1462, July 2016. doi:
10.1109/TBME.2015.2496264.

[SRG+16] Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu,
Isabella Nogues, Jianhua Yao, Daniel Mollura, and Ronald M. Sum-
mers. Deep Convolutional Neural Networks for Computer-Aided Detec-
tion: CNN Architectures, Dataset Characteristics and Transfer Learn-
ing. IEEE Transactions on Medical Imaging, 35(5):1285–1298, May 2016.
doi:10.1109/TMI.2016.2528162.

[Sto23] Storage — ClearML, 2023. URL: https://clear.ml/docs/latest/docs/
integrations/storage.

[Sup23] SuperTokens, Open Source User Authentication, 2023. URL: https://
supertokens.com/.

October 12, 2023 149

http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/CCWC54503.2022.9720902
https://doi.org/10.1109/CCWC54503.2022.9720902
https://socket.io/
https://docs.soketi.app/
https://dl.acm.org/doi/10.5555/2002168.2002178
https://dl.acm.org/doi/10.5555/2002168.2002178
https://doi.org/10.1109/TBME.2015.2496264
https://doi.org/10.1109/TBME.2015.2496264
https://doi.org/10.1109/TMI.2016.2528162
https://clear.ml/docs/latest/docs/integrations/storage
https://clear.ml/docs/latest/docs/integrations/storage
https://supertokens.com/
https://supertokens.com/

Bibliography

[SVI+15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the Inception Architecture for Com-
puter Vision, December 2015. URL: http://arxiv.org/abs/1512.00567,
arXiv:1512.00567, doi:10.48550/arXiv.1512.00567.

[Swa23] Swarm mode overview, August 2023. URL: https://docs.docker.com/
engine/swarm/.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition, April 2015. URL: http:
//arxiv.org/abs/1409.1556, arXiv:1409.1556, doi:10.48550/arXiv.
1409.1556.

[TAA+16] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Am-
jad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Bal-
las, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopol-
sky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson,
Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski,
Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc
Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans,
Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin,
Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Diele-
man, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi
Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier
Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel,
Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Ar-
jun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni,
Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Si-
mon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A.
Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Man-
zagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic,
Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi,
Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel,
Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter
Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman,
Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian,
Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub
Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Ur-
ban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley,
Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng
Zhang, and Ying Zhang. Theano: A Python framework for fast computa-
tion of mathematical expressions, May 2016. URL: http://arxiv.org/
abs/1605.02688, arXiv:1605.02688, doi:10.48550/arXiv.1605.02688.

150 Jannes Neemann

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.48550/arXiv.1605.02688

Bibliography

[Tas23] Tasks — ClearML, 2023. URL: https://clear.ml/docs/latest/docs/
fundamentals/task.

[TBF+22] Matteo Testi, Matteo Ballabio, Emanuele Frontoni, Giulio Iannello, Sara
Moccia, Paolo Soda, and Gennaro Vessio. MLOps: A Taxonomy and a
Methodology. IEEE Access, 10:63606–63618, 2022. doi:10.1109/ACCESS.
2022.3181730.

[TC23] Juan Terven and Diana Cordova-Esparza. A Comprehensive Review
of YOLO: From YOLOv1 and Beyond, August 2023. URL: http://
arxiv.org/abs/2304.00501, arXiv:2304.00501, doi:10.48550/arXiv.
2304.00501.

[Tea18] Caffe2 Team. Caffe2 and PyTorch join forces to create a Research + Pro-
duction platform PyTorch 1.0, May 2018. URL: http://caffe2.ai/blog/
2018/05/02/Caffe2_PyTorch_1_0.html.

[Tea23] Teachable Machine, 2023. URL: https://teachablemachine.
withgoogle.com/.

[Ten23] TensorFlow 1.x vs TensorFlow 2 - Behaviors and APIs — TensorFlow Core,
2023. URL: https://www.tensorflow.org/guide/migrate/tf1_vs_tf2.

[TH12] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the Gradient
by a Running Average of Its Recent Magnitude. In COURSERA: Neural
Networks for Machine Learning, 4, pages 26–31. 2012. URL: http://www.
cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf.

[Thr23] Throttling, February 2023. URL: https://developer.chrome.com/docs/
devtools/settings/throttling/.

[TM20] Jonas Teuwen and Nikita Moriakov. Chapter 20 - Convolutional
neural networks. In S. Kevin Zhou, Daniel Rueckert, and Gabor
Fichtinger, editors, Handbook of Medical Image Computing and Com-
puter Assisted Intervention, The Elsevier and MICCAI Society Book
Series, pages 481–501. Academic Press, 2020. URL: https://www.
sciencedirect.com/science/article/pii/B9780128161760000259,
doi:10.1016/B978-0-12-816176-0.00025-9.

[TOA+19] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa,
Shunta Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Ya-
mazaki Vincent. Chainer: A Deep Learning Framework for Accelerating the
Research Cycle, August 2019. URL: http://arxiv.org/abs/1908.00213,
arXiv:1908.00213.

[Tor] TorchScript — PyTorch 2.0 documentation. URL: https://pytorch.org/
docs/stable/jit.html.

October 12, 2023 151

https://clear.ml/docs/latest/docs/fundamentals/task
https://clear.ml/docs/latest/docs/fundamentals/task
https://doi.org/10.1109/ACCESS.2022.3181730
https://doi.org/10.1109/ACCESS.2022.3181730
http://arxiv.org/abs/2304.00501
http://arxiv.org/abs/2304.00501
http://arxiv.org/abs/2304.00501
https://doi.org/10.48550/arXiv.2304.00501
https://doi.org/10.48550/arXiv.2304.00501
http://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
http://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://www.tensorflow.org/guide/migrate/tf1_vs_tf2
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://developer.chrome.com/docs/devtools/settings/throttling/
https://developer.chrome.com/docs/devtools/settings/throttling/
https://www.sciencedirect.com/science/article/pii/B9780128161760000259
https://www.sciencedirect.com/science/article/pii/B9780128161760000259
https://doi.org/10.1016/B978-0-12-816176-0.00025-9
http://arxiv.org/abs/1908.00213
http://arxiv.org/abs/1908.00213
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html

Bibliography

[Tor23a] Torch Package Reference Manual. Torch, July 2023. URL: https:
//github.com/torch/torch7.

[Tor23b] Torch.add — PyTorch 2.0 documentation, 2023. URL: https://pytorch.
org/docs/stable/generated/torch.add.html.

[Tor23c] Torch.cat — PyTorch 2.0 documentation, 2023. URL: https://pytorch.
org/docs/stable/generated/torch.cat.html?highlight=cat.

[Tor23d] Torch.onnx — PyTorch 2.0 documentation, 2023. URL: https://pytorch.
org/docs/stable/onnx.html.

[Tri20] Triton Inference Server, March 2020. URL: https://developer.nvidia.
com/triton-inference-server.

[TZZ23] Yingjie Tian, Yuqi Zhang, and Haibin Zhang. Recent Advances in Stochas-
tic Gradient Descent in Deep Learning. Mathematics, 11(3):682, Jan-
uary 2023. URL: https://www.mdpi.com/2227-7390/11/3/682, doi:
10.3390/math11030682.

[UNe23] uNetworking/uWebSockets.js. uNetworking AB, August 2023. URL:
https://github.com/uNetworking/uWebSockets.js.

[Usi23] Using server-sent events - Web APIs — MDN, February 2023. URL:
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_
events/Using_server-sent_events.

[UvGS13] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective Search for Object Recognition. International Jour-
nal of Computer Vision, 104(2):154–171, September 2013. doi:10.1007/
s11263-013-0620-5.

[Val23] Valohai — Take ML places it’s never been, 2023. URL: https://valohai.
com/.

[Ver23] Vertex AI, 2023. URL: https://cloud.google.com/vertex-ai?hl=de.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention is All you Need. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL: https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[Wal23] Wallaroo.AI, 2023. URL: https://wallaroo.ai/.

[War02] Barry Warsaw. PEP 292 – Simpler String Substitutions — peps.python.org,
2002. URL: https://peps.python.org/pep-0292/.

152 Jannes Neemann

https://github.com/torch/torch7
https://github.com/torch/torch7
https://pytorch.org/docs/stable/generated/torch.add.html
https://pytorch.org/docs/stable/generated/torch.add.html
https://pytorch.org/docs/stable/generated/torch.cat.html?highlight=cat
https://pytorch.org/docs/stable/generated/torch.cat.html?highlight=cat
https://pytorch.org/docs/stable/onnx.html
https://pytorch.org/docs/stable/onnx.html
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://www.mdpi.com/2227-7390/11/3/682
https://doi.org/10.3390/math11030682
https://doi.org/10.3390/math11030682
https://github.com/uNetworking/uWebSockets.js
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://valohai.com/
https://valohai.com/
https://cloud.google.com/vertex-ai?hl=de
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://wallaroo.ai/
https://peps.python.org/pep-0292/

Bibliography

[Wat23] Watson Studio - Resources and Tools, 2023. URL: https://developer.
ibm.com/components/watson-studio/.

[Web23] WebSocket - Web APIs — MDN, March 2023. URL: https://developer.
mozilla.org/en-US/docs/Web/API/WebSocket.

[Wel23] Welcome to TorchMetrics — PyTorch-Metrics 1.0.1 documentation, 2023.
URL: https://torchmetrics.readthedocs.io/en/stable/.

[WKW16] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big Data, 3(1):9, May 2016. URL: https:
//doi.org/10.1186/s40537-016-0043-6.

[WLLT21] Lei Wang, Zhengchao Liu, Ang Liu, and Fei Tao. Artificial intelligence
in product lifecycle management. 114(3):771–796, 2021. doi:10.1007/
s00170-021-06882-1.

[WS19] Shuai Wang and Zhendong Su. Metamorphic Testing for Object Detection
Systems, 2019. URL: http://arxiv.org/abs/1912.12162, arXiv:arXiv:
1912.12162, doi:10.48550/arXiv.1912.12162.

[XYFP23] Mingle Xu, Sook Yoon, Alvaro Fuentes, and Dong Sun Park. A
Comprehensive Survey of Image Augmentation Techniques for Deep
Learning. Pattern Recognition, 137:109347, May 2023. URL: https:
//www.sciencedirect.com/science/article/pii/S0031320323000481,
doi:10.1016/j.patcog.2023.109347.

[YMW+20] Jining Yan, Lin Mu, Lizhe Wang, R. Ranjan, and Albert Zomaya. Temporal
Convolutional Networks for the Advance Prediction of ENSO. Scientific
Reports, 10:8055, May 2020. doi:10.1038/s41598-020-65070-5.

[Zei12] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method,
December 2012. URL: http://arxiv.org/abs/1212.5701, arXiv:1212.
5701.

[Zha19] Jiawei Zhang. Basic Neural Units of the Brain: Neurons, Synapses
and Action Potential, 2019. URL: http://arxiv.org/abs/1906.01703,
arXiv:arXiv:1906.01703, doi:10.48550/arXiv.1906.01703.

[ZJ17] Wang Zhiqiang and Liu Jun. A review of object detection based on convo-
lutional neural network. In 2017 36th Chinese Control Conference (CCC),
pages 11104–11109, July 2017. doi:10.23919/ChiCC.2017.8029130.

[ZQD+21] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,
Hengshu Zhu, Hui Xiong, and Qing He. A Comprehensive Survey on
Transfer Learning. Proceedings of the IEEE, 109(1):43–76, January 2021.
doi:10.1109/JPROC.2020.3004555.

October 12, 2023 153

https://developer.ibm.com/components/watson-studio/
https://developer.ibm.com/components/watson-studio/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://torchmetrics.readthedocs.io/en/stable/
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/s00170-021-06882-1
https://doi.org/10.1007/s00170-021-06882-1
http://arxiv.org/abs/1912.12162
http://arxiv.org/abs/arXiv:1912.12162
http://arxiv.org/abs/arXiv:1912.12162
https://doi.org/10.48550/arXiv.1912.12162
https://www.sciencedirect.com/science/article/pii/S0031320323000481
https://www.sciencedirect.com/science/article/pii/S0031320323000481
https://doi.org/10.1016/j.patcog.2023.109347
https://doi.org/10.1038/s41598-020-65070-5
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1906.01703
http://arxiv.org/abs/arXiv:1906.01703
https://doi.org/10.48550/arXiv.1906.01703
https://doi.org/10.23919/ChiCC.2017.8029130
https://doi.org/10.1109/JPROC.2020.3004555

	Table of Contents
	Introduction
	Machine Learning
	Overview
	Supervised Learning
	Feedforward Neural Networks
	Artificial Neurons
	Multilayer Perceptron
	Nonlinear Activation Functions

	Backpropagation
	Overfitting
	Batch Normalization

	Datasets
	Dataset Splitting
	Digital Pathology Challenges
	Data Augmentation

	Convolutional Neural Network
	Convolutional Layer
	Pooling Layers

	Building Blocks of Neural Networks
	Classification
	Object Detection
	Image Segmentation
	Pre-Trained Models

	The Artificial Intelligence Lifecycle and Software Tools
	The Artificial Intelligence Lifecycle
	Choosing a Deep Learning Framework
	Popularity of Different Deep Learning Frameworks
	PyTorch vs. TensorFlow

	Comparison of Existing End-To-End Artificial Intelligence Platforms
	ClearML

	Software Tools for Teaching Artificial Intelligence

	Requirements
	Stakeholders and Target Groups
	User Stories
	Functional Requirements
	Non-Functional Requirements

	Implementation
	General Software Architecture
	Centralized Authentication
	Creating Neural Network Architectures
	Visual Programming Editor
	Predefined Neural Network Architectures
	Collaboration

	Training Neural Network Models
	Creating Datasets
	Parsing Visual Programming Editor Nodes
	Training workflow

	Serving Neural Network Models

	User Test
	Execution
	Surveys
	Results

	Requirements Fulfillment
	Conclusion and Future Work
	Appendix
	Comparison of Pre-Trained and Not Pre-Trained CNNs
	Dataset
	Model Configuration
	Results

	The Project and Experiment Page
	Dataset Metadata
	Dataset Template Code
	The Dataset Page
	Lightning Model for Classification Tasks
	PyTorch Pooling Layers with Same Padding
	PyTorch Layers for Addition and Concatenation
	The Inception Module Realized in PathoLearn
	The Residual Block Realized in PathoLearn
	Evaluating the Best Neural Network Model Serving Format
	Training Environment
	Datasets
	Neural Network Architecture and Training Configuration
	Metric Gathering
	Results

	Examplatory Pre- and Postprocessing script
	Surveys
	Survey before Using Patholearn
	Survey after Using Patholearn
	Survey Answers before Using PathoLearn
	Survey Answers after Using PathoLearn

	Evaluating the Visual Programming Editor Real-Time Performance
	Environment
	Procedure
	Results

