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Abstract — We present an approach towards a data
acquisition system for digital twins that uses a 5G net-
work for data transmission and localization. The current
hardware setup, which utilizes stereo vision and LiDAR
for 3D mapping, is explained together with two recorded
point cloud data sets. Furthermore, a resulting digital twin
comprised of voxelized point cloud data is shown. Ideas for
future applications and challenges regarding the system are
discussed and an outlook on further development is given.
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I. INTRODUCTION

The fifth generation of cellular technology (5G) en-
ables the implementation of use cases that could not be
optimally covered utilizing previous standards. Some of
the enhancements coming with 5G over 4G are increased
bandwidth, higher coverage, lower latency and a greater
capacity for connected devices. Another aspect of 5G
is the possibility of accurate device localization, which
is especially interesting for indoor scenarios [1]. These
aspects propose to leverage 5G for digital twins.

A digital twin that is intended for purposes like area
management in logistics or navigation of delivery drones
requires a large amount of spatio-temporal sensor data to
be transmitted [2]. It is necessary to have a near real-time
space representation with high resolution, accuracy and
coverage for time-critical and security-related use cases.
High coverage implies sensors to be effective in different
environmental conditions and to be able to move in space
for varying perspectives. These requirements present a
challenging task when the overall system must exhibit the
flexibility to adapt to highly dynamic scenarios, all while
maintaining an affordable price point. High cost as well as
technical feasibility prevent organizations from benefiting
from the advantages of using digital twins [3], [4]. To
participate in this part of digital transformation, especially
small and medium-sized enterprises (SMEs) need to find
cost-effective and easy-to-use solutions [5].
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The research project Access to Public Spaces via 5G
(5GAPS) aims at the integration of 5G with use cases
of digital twins via proof-of-concept applications. For
that purpose, continuously localized sensors shall be used
for real-time indoor space monitoring by delivering the
required spatio-temporal data over a 5G network. The
recorded data is sent to a database system which operates
using a voxel grid structure, where each voxel represents
a distinct unit of data with various attributes such as color
or an assigned object type [6]. In addition to managing
the current state of space, the database also stores pre-
vious states. By leveraging the historical data, we gain
the ability to make informed predictions about future
trends, patterns, and behavior that contribute to improved
decision-making processes. Example indoor applications
that are targeted by our project are the monitoring of the
setup of industry fairs (cf. Sec. III-C) and the support
of rescue forces in public buildings. Potential outdoor
applications include the managing of parking lots, area
management and the detection of environmental changes.

II. RELATED WORK & CONTRIBUTION

In recent years several application scenarios for digital
twins of public or private spaces have been described and
tested. In their extensive review with a focus on smart city
applications Botı́n-Sanabria et al. identify five principal
challenges, among them the high implementation costs
due to the increased amount of sensors required for
complex environments as well as the limited availability
of 5G networks [3].

In most digital twin approaches rather expensive light
detection and ranging (LiDAR) sensors are used, e.g., [7],
[8]. Taurino and Villa, however, point out the necessity
of cost-effective solutions to capture data for the creation
of digital twins especially in SMEs [9].

Minos-Stensrud et al. thus present an approach using
stereo cameras mounted to unmanned aerial vehicles
(UAVs or drones) to create digital twins of SME factories
[5]. They conclude that using stereo cameras instead
of LiDARs the costs can be reduced by a considerable
amount. Shi et al. use stereo cameras to create a digital
twin for surveillance tasks [10]
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Our approach follows a similar direction in using low-
cost stereo cameras to create and update digital twins
of public spaces. The stereo camera measurements are
mapped to a ground truth captured once by LiDAR
measurements. In addition, we mount the stereo cameras
to regularly moving vehicles like forklift trucks in fair
halls or warehouses and buses, thus allowing the digital
twin to be updated with minimal extra effort.

III. DATA ACQUISITION

Data plays an important role in testing the basic
functionality of the mentioned database system. For that
purpose, we have collected two data sets A and B,
which serve various objectives. These objectives include
assessing the efficiency of data transmission over 5G
networks, evaluating the effectiveness of mapping and
localization algorithms, and validating the capabilities
of object recognition. Although the transmission and
processing is tested with a previously collected data set
instead of live sensor data, we expect to derive impor-
tant information for further development of the database
system and algorithms. At this stage of the project, one
aspect yet to be determined is the size of voxels, as
it significantly influences the performance requirements
on all system components. However, we anticipate that
voxels will have an edge length ranging from 0.1 to 0.3
meters. It is important to note that the edge length may
vary due to the unique characteristics of potential use
cases within and beyond the project scope.

There are two contexts in which we collect data: the
static and the dynamic state of space. In a static state, we
measure static geometry, like the ground and the walls
of an empty room. Such data can be used as reference
geometry in localization algorithms and, thus, must be
recorded with high accuracy. This is especially important
if no 5G localization is available, as was the case when
acquiring data sets A and B. Hence, point cloud-based
localization is an integral part of our work. Dynamic
geometry, e.g., a moving object in a room, is measured
in a dynamic state, which must be done highly frequently
over time, so that object movement can be retraced.
For that purpose, object attributes like identity are also
determined in a dynamic state. Both contexts require
appropriate scene coverage to fulfill their purpose, which
implies that sensors are numerous and mobile. Combining
the initial static state of a scene with the subsequent data
collection of the dynamically changing state yields the
basis for a digital twin.

A. Sensors

Data sets A and B were created using active stereo
depth cameras and a spinning, scanning LiDAR sensor,
which will be called cameras and lidar, respectively, from
now on. The sensors were connected to laptop computers
for data storage. Our decision for Intel RealSense D455
stereo cameras was driven by their cost-effectiveness.

Moreover, these cameras are preferred for the inclusion
of an infrared projector, which greatly enhances stereo
vision performance in low-light environments and on
surfaces lacking distinct features. The cameras record at
a high frame rate and also provide color information
of the measured geometry, making them applicable for
usage in dynamic scenarios. However, due to the depth
estimation method and sensor noise, the accuracy and
range are limited. Based on our observations, we have
found that the measured depth values tend to deviate,
on average, by one voxel edge length from the actual
geometry beginning at a distance of around 5 meters.
Therefore, the voxel representation of geometry at such
distances loses its connectivity. We intend to solve this
problem by combining multiple sensors.

In order to effectively monitor the dynamic changes in
the environment, the cameras were set to a frame rate
of 30 frames per second (FPS), reducing motion blur
but increasing the amount of redundant data. This frame
rate selection aligns with the representation of objects as
voxels in the database. Considering the expected relative
movement speeds, the chosen FPS value prevents object
translations by more than one voxel edge length between
consecutive frames in most indoor use cases. However,
if no relative movement is present, the recorded frames
are redundant. This could be addressed by adjusting FPS
based on observed or predicted movement. The cameras
were set to record with 1280×720 pixel resolution for
color and 640×360 for depth. The depth resolution was
halfed for various reasons, especially to reduce data set
size, but we intend to record at same resolution for depth
as for color in a live sensor streaming setup. As the
data is mapped to voxels, increasing resolution would
not necessarily yield benefits beyond a certain point;
however, stereo vision benefits from a higher resolution
in general. Similar to a dynamic adjustment of FPS,
dynamic adjustment of resolution might be beneficial.
Each camera was fully utilizing the build-in infrared dot
pattern projector and set to the highest accuracy preset in
the Intel RealSense Viewer for estimating depth.

The lidar sensor used by us is the Velodyne Puck LITE.
It has a range of around 100 meters, making it suitable
for capturing data in large, open spaces such as empty
halls or long pathways. Compared to the stereo cameras,
the lidar has a lower frame rate but measures points with
higher accuracy and, hence, is used to record reference
data. More specifically, the reason not to use multiple
lidar to monitor dynamic state are the high cost per device
and the lack of ability to measure color with most if
not all entry level devices. Another reason is the reduced
coverage compared to cameras. While a camera captures
light from an extended solid angle in a direction, the
lidar measures geometry with a small number of point
lines and, therefore, relies on relative sensor movement
for good coverage, making it less flexible.



Figure 1. The captured room in data set A seen by a camera (left) and mapped with the lidar from one position (right). The lidar
point cloud is colored by the reflectivity of measured geometry.

B. Data Set A
This data set covers an university room where a student

project poster exhibition takes place. It includes point
clouds of the empty room, i.e., the static state, collected
with the lidar and shown by Figure 1. Further, it includes
the subsequent build-up of poster stands, followed by
the actual event, i.e., the dynamic state, recorded by
the cameras. Before any mapping was done, the room
dimensions were manually measured using a laser mea-
suring tool. The mapping process via lidar was conducted
at five manually localized places as no 5G localization
was available. The localization was done relative to the
room as the coordinate space, where the walls and ground
served as the axis planes.

The data collection involved several steps. Initially,
we utilize LidarView [11] to collect data at each of the
five locations, saving it for further processing. Once data
collection is complete at each location, LidarView’s tools
are utilized to generate a trajectory using the simultaneous
localization and mapping (SLAM) filter. This trajectory
serves as the reference to align each recorded frame,
resulting in the creation of a dense point cloud, cf. Figure
1. In order to merge all five subset point clouds, each
is relocated to approximately align with the manually
measured location within an unified coordinate space.
Then, a single point cloud is selected as a reference, and
the remaining point clouds are automatically aligned to
it using registration tools of CloudCompare [12]. This
registration process results in the creation of a merged
and highly dense reference point cloud. This point cloud
is oriented using MeshLab [13] so that the walls and
ground align with the axis planes. Finally, the result
is subsampled to remove unnecessarily high density at
certain areas. This process is tedious but, compared to
a single measurement including the movement of the
lidar, avoids distortions. The reader may find a single
measurement enough for other applications.

Each camera was mounted on a stand and placed at
one location in the room where it stayed for the rest of
the recording session. Also, the cameras were oriented

Figure 2. The reference point cloud seen from above with a
camera point cloud. The red triangle illustrates the horizontal

viewing angle and the distance of 5 meters in the negative
z-direction in camera coordinates. Notice the distortion of the

camera point cloud compared to the reference point cloud
close to the wall.

towards the room’s middle area so that moving objects can
be seen from different perspectives. Like with the lidar,
the cameras were localized manually so that the collected
point clouds can later be placed in the reference point
cloud. The recording covers a time span of around three
and a half hours resulting in over two terrabytes of data,
making it especially interesting for stress testing the voxel
database. We determined empirically that the accuracy of
the recorded data is acceptable to a distance of 5 meters.
However, data beyond that limit was captured anyways
and is shown in Figure 2. The illustrated distortion,
which grows with distance, limits the capability of point
cloud based localization using stereo vision. Supportive
information like estimated location via 5G or inertial
measurement unit (IMU) data is required. As only three
fixed cameras were used and each camera is only able to
observe a relatively small volume of the room, the data
set focuses on the middle.



Figure 3. Color (left) and depth (center left) streams of one of the stereo cameras mounted to a forklift together with the produced
point cloud (center right) and the voxel representation (right).

C. Data Set B

The second data set covers a small time span of the
build-up of a large industry fair. More specifically, it
shows the on-going build-up work towards the end within
multiple fair halls. The main difference to data set A is
that cameras are not a fixed at a location.

For capturing the static state, our lidar was placed
on a push cart and slowly moved through the halls.
This implies that the observed scenario involves highly
dynamic information, e.g., moving workers and forklifts.
This data, however, can still be used as a reference for
evaluating localization algorithms based on point clouds.
In addition to its primary purpose, the data obtained from
the highly dynamic environment serves an additional role
in the testing and evaluation of future algorithms, in
particular those algorithms that are designed to store and
update database data of moving or temporary objects. The
mapped space is much larger than in data set A and far
more complex in geometry, which makes it suitable for
evaluating the handling of blind spots in sensor data as
coverage is far from being ubiquitous.

Camera recordings were done by mounting three stereo
cameras to a forklift as shown in Figure 4. All mounts
were designed to be installed next to the lamp bases of the
forklift and oriented towards the direction of illumination.
This offers the advantage that the observed geometry is
well illuminated in darker environments, which is impor-
tant for stereo vision. Two of the cameras were placed at
the front side and one at the rear side of the vehicle. The
cameras were oriented vertically to get a better coverage
of taller objects as the camera field of view (FoV) is
wide. A 3D-printed mount for horizontal orientation is
in development as we expect it to be applicable in more
scenarios. The recordings show the forklift driving in
the fair halls starting from an entry point. In Figure 3
a moment of the video stream of one of the mounted
cameras is shown together with the reconstructed point
cloud and voxel representation. The collected data set
covers a time span of an half hour.

Figure 4. A stereo camera mounted to a forklift.

Like for data set A, no 5G localization was available.
We therefore also recorded trajectory data via the IMUs of
the cameras. A major drawback of IMUs is their inherent
sensor noise, which can become increasingly problematic
over time. Despite this drawback, IMU data plays a role in
bridging time spans between localization via 5G or based
on point clouds. This is necessary because there is no
guarantee of successful sensor localization in every situa-
tion. By combining IMU data with additional localization
methods like 5G or SLAM, the overall system receives
valuable reinforcement, leading to improved accuracy and
reliability. This integration ensures continuity of data,
maintaining a consistent understanding of spatial position
and orientation, even when other localization methods
are absent or subject to inconsistencies. In this regard,
the inclusion of IMU data enables testing of point cloud
localization in conjunction with IMU data, even when 5G
localization is not yet available.



Figure 5. A voxelized situation from data set A. The images show students visiting the exhibition, represented as voxels with edge
length of 10 (left) and 5 (right) centimeters.

IV. DATA PROCESSING

Up to this point, we presented the preparation of
data for voxelization. The cameras producing point cloud
streams in camera coordinates are virtually placed in the
reference map according to the manual localization. The
orientation is set manually as well by comparing the
image stream with the reference point cloud. We intend
to do this automatically by localizing the camera point
clouds in the reference map [6]. The conversion step from
point cloud to voxels is done using Open3D [14]. Figure
5 illustrates the result of combining the camera streams
with the reference map as voxels.

The voxel representation shows that the overall ap-
proach yields the expected result. Space occupancy is
successfully monitored from multiple directions. How-
ever, distortions still occur and suggest to increase depth
resolution. Also, the result reveals how necessary an ap-
propriate coverage is. One aspect for further development
is the intelligent integration of camera streams when they
compete for writing a voxel.

Doing the same with a camera frame in data set B
yields a similar result, which can be seen in Figure 3.
However, as no accurate localization method is available,
especially as the observed scenario is highly dynamic and
covers a large area with long distances, integrating the
camera frames is very challenging. Without any initial
localization in the large reference map to progress from
using e.g. IMU data, real-time localization becomes unre-
alistic. Given a 5G localization at presumably centimeter
accuracy [1] we expect a similar outcome as in Figure 5.

The provided data sets serve as test data for the devel-
opment of the database pipeline, which is responsible for
updating the voxelized point cloud database. The database
stores the data in the form of voxels, which are obtained
through a combination of stereo cameras and LiDAR
sensors. To capture the area, we mount the cameras on
common vehicles such as forklift trucks. To optimize the
merging of camera streams and eliminate the need for
costly computations, we calibrate the cameras with one

another. This calibration establishes a local coordinate
system that positions each camera in relation to the others.

Once the data is recorded, it is transmitted via 5G to
either the voxel server or another intermediate computer
system for further processing. The data is recorded in
the form of RGB-D (RGB and depth) streams, which are
then employed by the object recognition algorithms. The
object recognition algorithms exclusively rely on RGB
images to detect and classify various objects, such as cars,
people, walls, streets, greenery, and more. The data of
these objects is then linked and stored with the related
generated voxels, resulting in voxels enriched by metadata
such as space occupancy, color, and object type.

Additionally, we leverage the point clouds generated
from the RGB-D images to localize ourselves in the
world. Localization in space is crucial for the project, con-
sidering that general availability of 5G localization, which
is studied by one of our project partners, is currently
limited [15]. Therefore, the development of alternative
localization methods becomes necessary. While 5G local-
ization provides a broad estimation, we rely on the precise
localization achieved through point cloud analysis. By
determining our exact position, we can query the database
for the corresponding bounding box area and map our new
data into that specific area. This enables us to calculate a
change-delta, which represents the differences in the voxel
world. We transmit this change-delta back to the database,
updating only the relevant changes in the specified voxel
area. This localization process is important for both the
usage of the database in AR/VR applications and for
updating the data within the database.

Efficiency is a critical aspect of our pipeline, given the
large volume of data involved and the need for optimal
server performance with multiple participants. Therefore,
the development of optimizations in the data loading and
storage processes is crucial. These data sets can be used to
explore improvements and streamline the pipeline within
the existing framework. Figure 6 provides an overview of
the entire pipeline, illustrating the flow of data and the
various components involved in the process.



Figure 6. Simplified scheme of the database pipeline for updating data in the voxel database, which stores voxels enriched by
metadata such as space occupancy, color, and object type 5G localization, object recognition as well as database design and

implementation are tasks that are handled by our project partners, details of which are out of the scope of this paper.

V. CONCLUSION

We have presented an approach for 3D data acquisition
in indoor scenarios and the captured spatio-temporal data
from two specific instances. Both data sets will be used
for development and testing of the data pipeline and
algorithms for voxel-based digital twins. This includes
the development of sensor localization and streaming
over 5G, discretization of the data and its storage, object
detection, and state forecasting for different application
scenarios.

Our data acquisition approach employs low-cost sen-
sors mounted on regularly moving vehicles such as fork-
lift trucks in fairground and storage halls. Future work
will focus on improved sensor localization and sensor data
fusion.
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