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Abstract
In recent years, building energy supply and distribution systems have become
more complex, with an increasing number of energy generators, stores, flows,
and possible combinations of operating modes. This poses challenges for super-
visory control, especially when balancing the conflicting goals of maximizing
comfort while minimizing costs and emissions to contribute to global climate
protection objectives. Mixed-integer nonlinear model predictive control is a
promising approach for intelligent real-time control that is able to properly
address the specific characteristics and restrictions of building energy systems.
We present a strategy that utilizes a decomposition approach, combining par-
tial outer convexification with the Switch-Cost Aware Rounding procedure to
handle switching behavior and operating time constraints of building compo-
nents in real-time. The efficacy is demonstrated through practical applications in
a single-family homewith a combined heat and power unit and in amulti-family
apartment complex with 18 residential units. Simulation studies show high cor-
respondence to globally optimal solutions with significant cost savings potential
of around 19%.

1 INTRODUCTION

Energy management systems provide a cost-effective way to directly reduce energy consumption in buildings. According
to [1], the implementation of intelligent building automation has the potential to achieve energy savings of up to 30%, lead-
ing to a significant reduction inCO2 emissions. The latter point is of significant importance due to global climate protection
goals implemented through a society-wide transformation to sustainable energy production; compare, for example, [2].
A promising candidate for an intelligent real-time supervisory control system is a model predictive control (MPC) strat-

egy. Of particular interest is nonlinear MPC (NMPC), which can be directly applied to nonlinear multi-dimensional sys-
tems, as they occur in the building sector. Themethod has already been successfully applied in various studies for different
building configurations and components, such as absorption chillerswith energy savings of 31.1% [3], domesticmicro-grids
with 10% savings [4], or temperature controls with around 17% savings [5] compared to conventional control methods.
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Here we present an advanced control strategy, mixed-integer NMPC (MI-NMPC), in order to consider integer controls
and restrictions on typical building technology components without considerable problem reformulations. The strategy
utilizes a decomposition approach, where an approximation of the optimal solution is determined by a combination of a
partial outer convexification reformulation and an integer control reconstruction procedure to achieve real-time capability.
We take into account the switching behavior of the building components alongwith admissible operating time constraints,
so-called dwell times. Thework of Bürger et al. [6] also presents amethod for addressing the constraints imposed by dwell-
times in a solar-driven climate system. However, this method combines the use ofMI-NMPCwith a binary approximation
problem solver called pycombina [7], which can be computationally expensive. In contrast, our approach utilizes the
advanced and efficient cutting-edge switch-cost aware rounding (SCARP) procedure.
We shortly summarize the results of a simulation study for the energy system of a single-family house performed in

[8]. The real-time performance and the resulting quality of the solution have been proved by their high correspondence
to the globally optimal solution calculated by the computationally costly dynamic programming (DP) method. Moreover,
we describe in detail the application and corresponding results of the strategy to a more complex optimization task with
multiple degrees of freedom resulting from a multi-family house with 18 residential units.
The article is structured as follows. First, we describe the workflow for solving general mixed-integer optimal control

problems (MIOCPs), as they arise in the energy management of buildings. Next, we present the application to the single-
family house from [8, 9], and then provide a more detailed description of the optimal control problem for the multi-
family residential and provide initial numerical results using the proposed solution method. The article concludes with a
summary of findings and an outlook on future work.

2 SOLUTION APPROACH

We first explain the problem formulation typically resulting from building energy applications, followed by the workflow
for solving the problem. It consists of convexification and relaxation of the original problem, followed by a rounding strat-
egy to generate a binary solution for the switching control variables, and finally, a post-processing step to avoid possible
constraint violations. The solution strategy is described here in a general and condensed form. For a detailed description,
refer to [8].

2.1 Problem formulation

The primary objectives of managing an energy supply system involve the dual focus of minimizing energy expenses and
maintaining a consistent provision of the necessary energy. This objective is typically addressed through amulti-objective
approach that aims to optimize economic control by assessing the cumulative operating costs as the primary objective
function. However, the discrete on/off attributes of the system components, combined with their ability to operate within
a continuous range, introduce a complex challenge in the form of a MIOCP

min
𝒙(⋅),𝒖(⋅),𝒗(⋅) ∫

𝑡f

𝑡0

𝐿(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡)) d𝑡 (1a)

[−2𝑝𝑡]s.t. �̇�(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡)), 𝑡 ∈ [𝑡0, 𝑡f ] (1b)

𝒙(𝑡0) = �̂�0, (1c)

𝒙(𝑡) ∈ [𝒙min, 𝒙max], 𝒖(𝑡) ∈ [𝒖min, 𝒖max], 𝒗(𝑡) ∈ {0, 1}
𝑛𝑣 ,𝑡 ∈ [𝑡0, 𝑡f ] (1d)

𝟎 ≤ 𝒄(𝒙(𝑡), 𝒖(𝑡), 𝒗(𝑡)),𝑡 ∈ [𝑡0, 𝑡f ] (1e)

where 𝒙 represents the system’s states, including the temperatures and states of charge of electrical and thermal storage.
By 𝒖 and 𝒗 we denote vectors of continuous and binary control variables, respectively, for the generators and storage
charging/discharging (when applicable).We have constraint (1b) to capture the system dynamics, alongwith (1d) to define
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the bounds for states and inputs. Additionally, there are arbitrary inequality constraints (1e) that ensure the appropriate
assignment of electricity prices for feed-in and purchase, among other conditions.

2.2 Mixed-integer NMPC strategy

The system control problem presented in Equation (1) exhibits typical characteristics of an MIOCP. The binary control
functions 𝒗 are typically involved in a nonlinear and non-convex manner in Equations (1a) and (1b). As a result, after
discretization in time, the problem becomes an NP-hard non-convex mixed-integer nonlinear programming (MINLP)
problem, compare [10].
To address this challenge, we employ a partial outer convexification approach as outlined in [11] for Equations (1a)

and (1b) and in [12] for Equation (1e). This approach leads to a transformed MIOCP formulation that becomes linear
and convex when considering the relaxed indicator controls 𝜶. Consequently, the resulting problem can be regarded as a
continuous optimal control problem (OCP)

min
𝒙(⋅),𝒖(⋅),𝜶(⋅)

∑2𝑛
𝑣

𝑖=1 ∫
𝑡f

𝑡0

𝛼𝑖(𝑡)𝐿(𝒙(𝑡), 𝒖(𝑡),𝒘𝑖) d𝑡 (2a)

[−2𝑝𝑡]s.t. �̇�(𝑡) =
∑2𝑛

𝑣

𝑖=1
𝛼𝑖(𝑡)𝑓(𝒙(𝑡), 𝒖(𝑡),𝒘𝑖), 𝑡 ∈ [𝑡0, 𝑡f ] (2b)

𝒙(𝑡0) = �̂�0, (2c)

𝒙(𝑡) ∈ [𝒙min, 𝒙max], 𝒖(𝑡) ∈ [𝒖min, 𝒖max],𝑡 ∈ [𝑡0, 𝑡f ] (2d)

𝜶(𝑡) ∈ [0, 1]2
𝑛𝑣

, 1 =
∑2𝑛

𝑣

𝑖=1
𝛼𝑖(𝑡),𝑡 ∈ [𝑡0, 𝑡f ] (2e)

𝟎 ≤ 𝛼𝑖(𝑡)𝒄(𝒙(𝑡), 𝒖(𝑡),𝒘𝑖),∀𝑖 ∈ {1, … , 2𝑛𝑣 }, 𝑡 ∈ [𝑡0, 𝑡f ] (2f)

with 𝛼𝑖 as a binary indicator function (sometimes called a one-hot encoding) for each possible choice of 𝒗(𝑡) = 𝒘𝑖 ∈
{0, 1}𝑛

𝑣 . Even though those are formally 2𝑛𝑣 , that is exponentiallymany, in practical applications a large number of choices
typically encodes binary control actions that are not sensible and can be removed from the problem (2) a priori. To solve
the problem (2), well-established techniques for direct optimal control exist, such as direct multiple shooting [13] or direct
collocation [14].
To determine an appropriate binary control𝝎𝑁 from an optimal solution (𝒙𝑁, 𝒖𝑁, 𝜶𝑁) that was obtained by discretizing

(2) into 𝑁 time elements, we utilize the novel SCARP procedure using a shortest-path approach, initially introduced in
[15, 16] and successfully applied in [8]. One of the limitations of SCARP is the inability to consider disturbances to the
system’s states 𝑥(𝑡) when computing the binary solution from a relaxed optimal one. Consequently, applying a rounded
solution can lead to violations of the state bounds or path constraints (2d) formulated in the original oOCP. Therefore,
a post-processing step is performed before applying the solution to the process. We solve problem (2) again, fixing the
SCARP solution and making use of the remaining continuous control degrees of freedom to satisfy the constraints.

3 APPLICATION TO ENERGY SUPPLY SYSTEMOF SINGLE-FAMILY HOUSE

The energy supply system for the single-family house includes a gas-driven modulating micro combined heat and power
(CHP) unit, a condensing boiler as a backup heater, and a buffer storage tank (see Figure 1). Thermal energy generated
by the CHP unit is stored in the buffer tank and used for heating and domestic hot water. The electricity generated by the
CHP unit is consumed within the house, with excess energy being fed into the grid and electrical energy shortages being
covered by the grid. Thus, the system has different energy sources with nonlinear efficiency curves and variable costs.
Moreover, the CHP unit generates both electricity and heat simultaneously, but their demands may not always align, and
the storage capacity is limited.
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F IGURE 1 Energy supply system of single-family house consisting of micro combined heat and power unit (µCHP unit), backup heater
(BH) and heat storage tank (HST).

This leads to a multi-objective economic OCP with binary and continuous control variables for each generator and one
state variable representing the thermal energy in the buffer storage. The OCP also incorporates a dwell-time requirement,
ensuring that the CHPunit operates for aminimumduration of 60min for durability reasons. For a comprehensive system
and problem description, refer to [8, 9].
To achieve the objective of minimizing total operating costs, the DP approach as well as the proposed strategy (Res)

utilize information on future energy demands. They adjust the operating hours of the CHP unit to coincide with peak
electrical load periods whenever possible (see Figure 2). The buffer storage capacity is fully utilized to bridge periods of
low electrical consumption. These approaches maximize in-house electricity generation while minimizing uneconomical
feed-in. Additionally, the thermal energy requirements are consistently met, ensuring that the storage limits of 13.5 and
50 kWh are not exceeded. In contrast, the conventional heat-led control strategy (SoA) primarily relies on the level of
the storage tank and the outdoor temperature. Predefined time intervals for low, medium, or high production are used to
determine the desired storage tank level. This results in maintaining a higher overall level in the storage tank. However,
since the future demand is not known in advance, the controller always aims to preserve sufficient thermal energy for
high consumption periods. The boiler functions as a backup heater and is only activated during periods of high thermal
demand on extremely cold days. In the analyzed timeframe, there is no need for support from the backup heater at any
point. In total, the optimizer using DP achieves cost savings of 18.9% compared to the SoA strategy for a simulated period

F IGURE 2 Characteristics of the power supply system - power consumption (𝑃con and �̇�con) and generated electrical power (𝑃) and
thermal energy in storage 𝑄sto with heat-led control strategy (SoA), dynamic programming approach (DP), and proposed strategy (Res); lower
(LB) and upper (UB) heat storage limits.
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of one week, however with a high computational effort. By providing an approximated optimal solution in a significantly
shorter time, the proposed real-time capable approach still achieves cost savings of 16.4%.

4 APPLICATION TO ENERGY SUPPLY SYSTEMOFMULTI-FAMILY RESIDENTIAL

4.1 System description and problem definition

In this section, we consider a more complex energy supply system that is widespread in modern multifamily residen-
tials and is actually deployed in a real building. As schematically illustrated in Figure 3, it consists of two thermal energy
generators: a heat pump and a gas boiler. The generated energy is then, in order to follow the requirements on differ-
ent temperature levels, distributed among two heat storage tanks, one dedicated only to domestic hot water and another
to hydronic heating. The electrical energy, required for the operation of the heat pump can be obtained from the bat-
tery storage which is charged through the installed photovoltaic unit or purchased from the grid. The excesses of the
generated electrical energy can be stored in the battery storage or delivered to the other power units within the energy
supply system (gas boiler, pumps, valves, etc.). Thus, the system consists of energy units and flows whose dynamics is
highly nonlinear along with a large number of disturbances both at the consumption and generation sides. It is obvi-
ous that the complexity of this system is much higher in comparison to the system from Section 4, however, the overall
concept and objectives are absolutely the same. Therefore, we implement a similar modeling strategy and the very same
MI-NMPC-based solution approach.

4.2 Modeling approach

We want to accurately follow the state of the heat storage tanks using rather simple energy balance equations. The high
dynamics of the domestic hotwater demand ismet by the buffer storage tank and therefore causes unnecessary complexity
for the optimizer. Hence, the high peaks of the domestic hot water demand are smoothed and we do a similar procedure
of encapsulation of both storages for the domestic hot water and hydronic heating here. As a consequence the dynamics
of one cumulative heat storage tank has to be described.
We start with the description of the energy generators and then will follow the energy flows to the heat storage tank.

Similar to [9], we introduce an integer control to represent the state of an energy unit and a continuous input for its power
modulation. Thus, the boiler heating power of the gas reads

�̊�g,boi(𝑡) = 𝑢boi(𝑡)𝑣boi(𝑡), (3)

F IGURE 3 Energy supply system of multi-family residential consisting of heat pump (HP), gas boiler (GB), photovoltaic system (PV),
heat storage tank (HST) and battery storage (BAT).
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with the modulated input power 𝑢boi ∈ [5, 40] (kW) and integer input 𝑣boi ∈ {0, 1}. The boiler is well-insulated in prac-
tice and therefore, omitting the losses to the ambient, its resulting thermal output power is: �̊�boi(𝑡) = 𝜂boi�̊�g,boi(𝑡). Here,
the boiler efficiency 𝜂boi is selected constant and along with all the necessary parameters given in Table 1. Similarly,
the electrical output power of the heat pump is given by 𝑃HP,el(𝑡) = 𝑢HP(𝑡)𝑣HP(𝑡), with 𝑢HP ∈ [0.4, 2.5] (kW) and the
resulting thermal output power is represented by �̊�HP(𝑡) = 𝜂HP(𝑡)�̊�HP,el(𝑡). Unlike for the gas boiler, where its efficiency
does not fluctuate a lot depending on the flow and return temperature, the heat pump coefficient of performance (COP)
𝜂HP(𝑡) highly depends also on the ambient temperature. Therefore, accurate calculation of the efficiency here is crucial
and for the current scenario is performed by means of a spline function, based on the efficiency curves from the heat
pump documentation.
We divide the storage tank into three compartments since its charging and discharging is taking place in the pipes

at different height with 𝜃1,2,3(𝑡) representing the water temperatures in the corresponding compartments. Due to the
consideration of only one storage and its direct connection to the heat pump, the water flows out of the storage �̊�sto(𝑡)
is equivalent to the water flow into the heat pump �̊�HP(𝑡). The water pipes connecting heat storage with the heat pump
and the space heating station are located in compartment three of the storage tank and therefore the water temperatures
there are considered equal 𝜃sto,out(𝑡) = 𝜃sto,3(𝑡) = 𝜃HP,in(𝑡). The flow temperature of the heat pump is based on its resulting
heating power output:

𝜃HP,out(𝑡) = 𝑣HP(𝑡)𝐒(𝜃amb, 𝜃HP,in, 𝜃HP,out)𝑃HP,el(𝑡)
/
(𝑐w�̊�sto(𝑡)) + 𝜃HP,in(𝑡), (4)

where 𝐒(⋅) is the heat pump efficiency spline function based on the efficiency curves from the documentation. Actual
measurements of the ambient temperature 𝜃amb(𝑡) are used first and later will be replaced by an external forecast model.
If additional heating is required, it is achieved with the help of the gas boiler and the resulting inlet temperature of the
storage reads

𝜃sto,in(𝑡) = 𝑣boi(𝑡)�̊�boi(𝑡)
/
(𝑐w�̊�sto(𝑡)) + 𝜃HP,out(𝑡). (5)

The heat storage discharge takes place from compartment 1. The temperature after the heating circuit then can be derived
by

𝜃SH,out(𝑡) = 𝜃sto,1(𝑡) − 𝑃SH(𝑡)
/
(𝑐w�̊�SH(𝑡)), (6)

with 𝑃SH as a space heating demand and �̊�SH as the space heating inlet water flow. The system’s thermal consumption is
treated as a time-varying parameter and for the initial simulations is provided by themeasurements. However, an accurate
heat demand forecast model is to be used later, when the deployment of the controller takes place.
In order to describe convective flows in the storage, we require a function with a switching behavior, dependent on

the temperatures of the compartments. This is however highly undesirable for derivative-based optimization. There-
fore, we utilize a smoothing function  to achieve a smoothing transition between the convective flow directions. Thus,
the resulting convective flow between compartments 1 and 2 is: �̊�12(𝑡) = (�̊�SH(𝑡) − �̊�sto(𝑡), 𝜃sto,2(𝑡), 𝜃sto,1(𝑡)), for com-
partments 2 and 3: �̊�23(𝑡) = (�̊�sto(𝑡) − �̊�SH(𝑡), 𝜃sto,2(𝑡), 𝜃sto,3(𝑡)) and overall convective flow: �̊�123(𝑡) = (�̊�sto(𝑡) −
�̊�SH(𝑡), 𝜃sto,1(𝑡) − 𝜃sto,2(𝑡), 𝜃sto,2(𝑡) − 𝜃sto,3(𝑡)).
The resulting dynamics for the compartment temperatures are then obtained as follows

�̇�sto,1(𝑡) =
[
�̊�sto(𝑡)𝜃sto,in(𝑡) − �̊�SH(𝑡)𝜃sto,1(𝑡) + �̊�12(𝑡) + (−𝛽sto(𝜃sto,1(𝑡) − 𝜃amb) − 𝐴sto𝛼w(𝜃sto,1(𝑡) − 𝜃sto,2(𝑡)))

/
𝑐w

]/𝑚sto
3
, (7)

�̇�sto,2(𝑡) =
[
�̊�123(𝑡) + (−𝛽sto(𝜃sto,2(𝑡) − 𝜃amb + 𝐴sto𝛼w(𝜃sto,1(𝑡) − 𝜃sto,2(𝑡)) − 𝐴sto𝛼w(𝜃sto,2(𝑡) − 𝜃sto,3(𝑡)))

/
𝑐w

]/𝑚sto
3
, (8)

�̇�sto,3(𝑡) =
[
�̊�SH(𝑡)𝜃SH,out(𝑡) − �̊�sto(𝑡)𝜃sto,3(𝑡) + �̊�23(𝑡) + (−𝛽sto(𝜃sto,3(𝑡) − 𝜃amb) + 𝐴sto𝛼w(𝜃sto,2(𝑡) − 𝜃sto,3(𝑡)))

/
𝑐w

]/𝑚sto
3
. (9)

Now, on the side of electrical energy, we first calculate the battery charge from the photovoltaic system (PV)

𝑃bat,in(𝑡) = 𝐴PV𝜂PV𝐼sol(𝑡) − 𝑃PV,der(𝑡), (10)

where 𝐼sol(𝑡) is the time-varying solar irradiance measurement or prediction data. 𝑃PV,der(𝑡) corresponds to the control
input for the electric power derating from the PV. Since the PV systemand the battery are not able to cover the full electrical
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demand of the energy generators, we have to consider the electricity purchases from the grid. The corresponding power
reads

𝑃grd(𝑡) = 𝑣HP(𝑡)𝑃HP,el(𝑡) + 𝑣boi(𝑡)𝑃boi,el(𝑡) − 𝑃bat,out(𝑡), (11)

where 𝑃boi,el(𝑡) is the electrical power of the boiler and is assumed to be directly proportional to its gas power output
𝑃boi,el(𝑡) = 𝜂boi,el𝑃boi,gas(𝑡). The dynamics of the battery state of charge can then be derived from

̇𝑆𝑂𝐶bat(𝑡) = (𝑃bat,in(𝑡) − 𝑃bat,out(𝑡))
/
𝐸bat. (12)

In the end, we deal with the system with 4 state variables 𝒙𝑇 = (𝜃sto,1, 𝜃sto,2, 𝜃sto,3, 𝑆𝑂𝐶bat) and an input vector with six
components 𝒖𝑇 = (𝑣HP, �̊�HP, 𝑣boi, 𝑢boi, 𝑃bat,out, 𝑃PV,der).

4.3 Problem formulation

Having a similar goal to the single-family house of minimizing the energy expenses, we formulate the objective term

𝐿(𝑡, 𝒖(𝑡), 𝒗(𝑡)) = 𝑣boi(𝑡)�̊�g,boi(𝑡)𝑝gas + 𝑃grd(𝑡)𝑝el, (13)

representing the total costs spent on gas and electricity purchases with 𝑝gas and 𝑝el as prices for the gas and electricity
purchases, respectively. In order to ensure the safe operation of the systemwe introduce several trivial path box constraints
on temperature levels in the storage 𝜃1,2,3 and hardware constraint on the heat pump maximum temperature difference
𝜃HP,out − 𝜃HP,in. A terminal constraint to keep the heat storage and the battery state on certain levels at the end of the
prediction horizon is also imposed. The resulting system control problem is a MIOCP of the same form as in [8] but
with a more-dimensional and complex model described above. Therefore, we omit the interim problem formulation here.
Following the convexification and relaxation procedures from Section 2, we introduce one-hot encoding similar to [8] here
𝝎(𝑡) ∶ 𝕊4 → Ω ∶= {0, 1}2, but for the integer inputs for the boiler and the heat pump on/off states. Relaxation procedure
then replaces 𝝎 ∈ {0, 1}4 with 𝜶 ∈ [0, 1]4. Consequently, the continuous OCP of the form from Equation (2) with 𝑛𝑣 = 2
is solved. In the current formulation, we choose a rather large sampling time of 15 min and therefore we can omit the
minimum operation time constraints for the energy generators.

4.4 Numerical results

We provide and investigate the simulation results for the prediction horizon of 24 h with a sampling time of 900 s. The
continuous OCP is discretized and parametrized bymeans of themultiple-shootingmethod. It results in an nonlinear pro-
gram that is solved with an sequential quadratic programming (SQP) method in combination with an high-performance
interior-point method (HPIPM) solver [17] for the quadratic program subproblems. The overall solving procedure is a
one-click solution and is part of an automatic toolchain from IAV GmbH [18].
Figure 4 illustrates the resulting trajectories for thermal and electrical energy generation and consumption. First of all,

it can be seen that the heating demand is always covered by using both the heat pump and the gas boiler. However, most
of the thermal energy is generated by the heat pump due to its more economical operation. This behavior is illustrated in
Figure 4a, where the gas boiler is utilized only at specific periods of high thermal demand. FromFigure 4b it is particularly
evident that the heat pump COP 𝜂HP follows the outside temperature curve 𝜃amb. Apart from that, we can notice, that the
maximum thermal power output of the gas boiler takes place during the periods of low heat pump COP.
If we take a look at the dynamics of the storage compartments’ temperatures in Figure 4c, we can observe a shifting

behavior, which is only possible due to the predictive controller. For instance, the heat storage is charged in the daytime,
during the period of high heat pump COP, although no heat demand exists. For a conventional control, however, such
shifting behavior would be challenging to implement, and uneconomical storage charging would take place only during
the period of the peak demands.
Finally, Figure 4d illustrates the behavior of the electrical battery which is charged during the periods of high PV power

generation and is discharged when the electrical power is required by the heat pump at low COP levels.
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(A)

(B)

(D)

(C)

F IGURE 4 Trajectories of the power supply system. a) Thermal power output of heat pump (HP), gas boiler (Boi), and space heating
demand (SH). b) Coefficient of performance of heat pump (𝜂HP) and ambient temperature (𝜃amb). c) Temperatures of heat storage
compartments (1, 2, 3) and lower bound on upper compartment (1,min). d) State of charge of battery (𝑆𝑂𝐶bat) and total electrical power
generated by photovoltaikc system (𝑃𝑉out).

In order for the controller to handle the rapidly changing nonlinear disturbances, we utilize a similar early-terminated
SQP strategy as in [8]. It results in an average calculation time per feedback of 1.66 s with a maximum of 2.8 s on a typical
laptop hardware with Intel(R) Core(TM) i7-8665U and 16.0 GB RAM. As a result, the real-time capability of the controller
strategy in application to the complex system of a multifamily residential is also evident.

5 CONCLUSIONS

A novel approach for supervisory control of building energy systems has been introduced and demonstrated through
two practical case studies. The resulting optimization problem is a mixed-integer optimal control problem with specific
requirements for minimum operating times, known as dwell-times. The presented strategy consists of partial outer con-
vexification and relaxation strategies, followed by a SCARP reconstruction approach and a final post-processing step that
is essential to avoid constraints’ violation.
We have shown that using this approximate optimal control strategy, significant cost savings can be achieved compared

to conventional controlmethods for a single-family homewith a combined heat and power unit alongwith high agreement
with a globally optimal solution and compliance with all system constraints. Furthermore, the applicability and real-time
capability of the proposed strategy have been demonstrated for a more complex multi-family apartment complex with 18
residential units.
Future work will focus on exploring the energy and cost savings potential and the optimality of the proposed strategy

for the multi-family building case, as well as its practical implementation in a real building. Also sampling time reduction
and dwell-times consideration for that more complex application are parts of the forthcoming work.
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