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A B S T R A C T

Music streaming platforms offer music listeners an overwhelming choice of music. Therefore, users of streaming
platforms need the support of music recommendation systems to find music that suits their personal taste.
Currently, a new class of recommender systems based on knowledge graph embeddings promises to improve
the quality of recommendations, in particular to provide diverse and novel recommendations. This paper
investigates how knowledge graph embeddings can improve music recommendations. First, it is shown how a
collaborative knowledge graph can be derived from open music data sources. Based on this knowledge graph,
the music recommender system EARS (knowledge graph Embedding-based Artist Recommender System) is presented
in detail, with particular emphasis on recommendation diversity and explainability. Finally, a comprehensive
evaluation with real-world data is conducted, comparing of different embeddings and investigating the
influence of different types of knowledge.
1. Introduction

In the last decade, streaming music over the web has become the
dominant way of consuming music (Friedlander, 2015). Music stream-
ing platforms give users access to millions of songs from millions of
artists. But finding content that matches one’s interests and preferences
is becoming a major concern. Especially in the music domain, users
want to discover new bands and music styles they have not heard before
to broaden their horizons. Exploring huge music libraries without any
guidance or pre-filtering is clearly overwhelming.

Music recommender systems aim at recommending items in the music
domain such as songs or music artists. Following, we sketch a couple
of typical approaches used to implement recommender systems that, in
turn, will be relevant for the understanding of the paper:

• Collaborative filtering is the best known and most-established rec-
ommender technology in commercial systems (Aggarwal, 2016),
and has been widely used for music recommendation. The basic
idea of collaborative filtering is that users who have liked similar
artists and songs in the past are likely to share a preference for the
same music. Following this assumption, collaborative filtering-
based approaches recommend music items that similar users have
liked. Users are considered similar if they have a similar listening
history, which can be indicated by matching ratings or by the
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items consumed in the past. However, collaborative filtering suf-
fers from the cold start problem (Schedl et al., 2018): there is not
enough information about new users or music items in the system
to derive meaningful recommendations for them. Moreover, it
tends to popularity bias, recommending more popular items that
are popular with everyone, and disregarding new or little-known
items.

• Knowledge graph-based recommender systems make use of a
graphical representation of the domain knowledge (Chicaiza
& Valdiviezo-Diaz, 2021). A knowledge graph defines semantic
relationships between entities relevant to the domain and the
objects to be recommended. In the music domain, knowledge
graphs could consider music artists, songs, albums, music labels,
genres and more. In addition, known relations between users and
music can be included in the graph, representing pieces of music
they have interacted with in the past. The goal of knowledge
graph-based recommendation systems is to find matches between
users and items based on the given knowledge.
Recent advances in the field of graph embeddings have led to
the increasing popularity of knowledge graph embedding-based
recommender systems (Wang et al., 2017). Graph embeddings
transform the nodes of a graph into a latent vector represen-
tation so that the structural information of the graph is pre-
served. Working with graph embeddings instead of the graph
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itself is usually more efficient and allows application of vector-
based mathematics such as calculating distances between vec-
tors. Knowledge graph embedding-based recommendation sys-
tems make use of graph embeddings of the underlying knowledge
graph to recommend items to users. They can overcome the
traditional challenges in recommendations, namely the cold start
problem and the challenge of providing meaningful explanations
for recommendations.

In this paper, we investigate how music recommendations can ben-
fit from a knowledge graph embedding-based approach. We propose
he music recommender system EARS (knowledge graph Embedding-
ased Artist Recommender System), which is based on knowledge graph
mbeddings and uses open data from the music domain. In particular,
ur main contributions are:

(A) Knowledge graph: Using open data sources, we develop a knowl-
edge graph that contains the appropriate information for a mu-
sic recommender to enable high-quality recommendations. We
claim that good recommendations require two types of infor-
mation: (i) semantically rich data about the music domain pro-
viding sufficient knowledge about music artists and bands, (ii)
historical data on users’ listening behavior, reflecting users’ atti-
tudes and feelings towards artists. This approach leads to a col-
laborative knowledge graph that combines content-based knowl-
edge about artists with collaborative knowledge that connects
users with similar preferences. The generation of the knowledge
graph involves the choice of appropriate open data sources,
feature engineering in the selection of relevant data, and the
integration of different datasets. Furthermore, data sampling is
required to reduce the dataset size for further processing. To
the best of our knowledge, there is no comparable publicly
available knowledge graph for the music domain, that contains,
in particular, semantically rich data about artists and data about
user behavior.

(B) Embeddings: Which embedding method works best for a given
knowledge graph depends largely on its specific properties.
Therefore, different embedding methods will be evaluated and
compared to identify which are best suited for the EARS system.
Using a standard library,1 various embeddings are computed for
our specific music knowledge graph. In particular, we determine
the recommendation quality and runtime behavior on the EARS
knowledge graph. Furthermore, different hyper parameters are
compared and selected for the most promising methods.

(C) Recommender: We present the recommendation system EARS,
which takes advantage of the graph embeddings of the un-
derlying knowledge graph. The EARS recommendation mech-
anism consists of the following main building blocks: (i) user
profiles described by users’ listening histories, (ii) similarity
of two artists computed by using their corresponding embed-
dings, (iii) similarity of candidate artists to a given user history.
Unlike other work, EARS explicitly addresses the diversity of
recommendations by using a bounded-greed selection approach.
Moreover, we show how recommendations can be explained
by exploiting the semantically rich knowledge contained in the
knowledge graph.

A comprehensive evaluation of our approach is conducted with
eal-world data to gain insights into the performance of the recom-
endation system. Using various performance metrics, we evaluate the

ecommendation quality of EARS. In particular, we study the impact
f the embedding methods as well as different recommendation pa-
ameters. Furthermore, we investigate the extent to which different
omain-specific knowledge affects the recommendation results. For this

1 https://karateclub.readthedocs.io.
2

purpose, we compare an EARS variant that uses the entire knowledge
graph with all art-specific data with a variant that uses only the
collaborative user data.

Overall, EARS offers a unique and flexible mechanism tailored to
the recommendation of music artists that, in contrast to other work, is
based on open data and explicitly addresses recommendation diversity
and explainability.

The paper is organized as follows. In Section 2 we give a brief
overview of music recommender systems and their major challenges.
Section 3 discusses shortly the basic concepts of knowledge graphs
and graph embeddings. Then, Section 4 presents EARS in detail and
provides a detailed description of all included components. The results
of extensive experiments evaluating our approach are presented in
Section 5. Subsequently, related work is presented in Section 6. Finally,
we summarize the paper and discuss some future lines of work in
Section 7.

2. Music recommendation

This section provides a basic understanding of the music domain.
First, an overview of how music is consumed today is given. Then, we
discuss the basic data entities that are relevant in the music domain.
Afterwards, we take a look at open data sources in the music domain
that can provide knowledge graph-based recommender systems with
the data they need. Finally, we discuss the most common use cases and
challenges in music recommender systems.

2.1. Music consumption

Nowadays, music streaming services provide access to huge cat-
alogues of music. As of 2022, Spotify offers a library of 80 million
songs and claims to be the most popular audio streaming service with
a total of 433 million user including 188 million subscribers.2 Other
popular music streaming platforms are Tidal, Apple Music, Amazon
Music, SoundCloud and Deezer.

Back when access to music was still limited by ownership of a
hysical medium such as vinyl or CD, the music available was restricted
y the access to such mediums or by the music selections of radio
tations. Now that the majority of all recorded music is available at any
ime for anybody, the way music is heard and discovered has drastically
hanged. Not only do music listeners have a huge amount of music to
hoose from, but they also have to make the hard decision of what to
isten to from the wide range of music on offer. Discovering music has
lso changed: before, record stores and radio hosts used to pre-select
usic for consumers to buy or listen to. Nowadays, music streaming

ervices have to perform the task of filtering the available music to
resent users with the music they like to listen to. Given the almost
omplete availability of music nowadays, music consumption would
ardly be possible without recommendation systems that pre-select the
usic relevant to a user from the existing offer.

.2. Entities in the music domain

In order to develop a knowledge graph, it is first necessary to
dentify the fundamental entities in the music domain to establish a
ommon vocabulary:

• A recording can be described as the result of producing music.
• A track (also called song) is a continuous, self-contained piece of

music, which is always related to a single recording.
• A release is a one-time edition of a recording distributed to con-

sumers on a specific date and by a specific label. It is stored on a
medium (e.g. vinyl or CD) and can be of type album, compilation
or single.

2 https://newsroom.spotify.com/company-info/.

https://karateclub.readthedocs.io
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• Labels (usually synonymous with record companies) are responsi-
ble for the production, manufacture, promotion and distribution
of recordings.

• An artist can refer to an individual musician or a group of musi-
cians as in a band. Furthermore, other music professionals such
as producers or sound engineers are also referred to as artist in
the music domain.

For instance, the band Pink Floyd is an artist which recorded the
ecording Wish You Were Here in 1975. The recording consists of five
ifferent tracks. Brian Humphries is the recording engineer of the record-
ng and could thus viewed as another artist involved. The first release of
he recording was published as an album by the label Columbia in 1975
n vinyl. As of 2022, the recording Wish You Were Here by Pink Floyd
as a total of 93 releases by a variety of different labels on all types of
vailable media.

etadata
The data discussed so far relates to music in terms of entities

nvolved in making, representing and distributing music. Metadata
rovides additional information, e.g. about an artists name, a tracks
ame, the year of recording, the length of the recording. Metadata is
mbedded in a music file such as an mp3-file representing a music
rack. The de facto standard for storing meta-data in music files is
D3. ID3 was first released in 1996 and defines a standard for adding
rack name, artist name and album name to an mp3-file. In its current
ersion ID3v2, it also supports longer metadata entries such as song
yrics (Morris, 2012). Generally, all kinds of information regarding a
usic item can be embedded in a music file using ID3 tags.

One type of information in the music domain that is often used and
iscussed is genres. Music genres classify music that share a distinctive
usical language into common categories (Lena & Peterson, 2008). In

ddition to the music characteristics, additional factors such as nation
r gender can be included in the classification (Brackett, 2016). Genres
ot only serve the industry in delivering new products to its target
udience, it can also be useful for a consumer in terms of discovering
ew music.

.3. Open music data sources

A key issue for a knowledge graph is how to populate it with data.
his section presents the two open data sources we selected to build
he music knowledge graph.

usicBrainz
MusicBrainz3 provides public information and metadata about music

tems. Its data is maintained and curated by a community of 252,000
ctive editors and includes about 2 million artists, 3.3 million releases
nd 220,000 music labels. Besides being a source of open music infor-
ation, MusicBrainz provides unique MusicBrainz Identifiers (MBIDs)

hat can be added to identify releases or artists. The MBID can be
sed by other applications or datasets to link to a resource in the
usicBrainz database. Popular datasets such as the Last.fm dataset

discussed below) references entities such as music artists by using the
BID. MusicBrainz provides a complete data dump of its underlying

ostgreSQL database, which includes tables for entities such as artists,
eleases and labels.

3 https://musicbrainz.org/.
3

Last.fm data
Last.fm4 is an excellent platform for collecting data about music

listening behavior. It allows users to track the digital music they
listen to locally on their devices or on services like Spotify or Tidal.
The tracked information can be used to provide users with statistics
about their listening behavior. Furthermore, users’ listening histories
are made publicly available, which makes them very useful for music
recommender systems (Guo et al., 2020). One popular dataset based
on Last.fm is the Celma dataset (Celma, 2010). The data includes
music tracks from 359,000 users playing about 17.5 million tracks by
294,000 artists. Most artists have an MBID that points to the artist in
MusicBrainz.

Other datasets
There are also other datasets that could be used for building a music

knowledge graph. An obvious option would be DBpedia,5 a data source
for general knowledge that contains far fewer music-specific resources
than MusicBrainz and is therefore less suitable. Another alternative
would be Discogs,6 which serves as a database and a marketplace of
music releases. Although Discogs contains even a larger amount of data
than MusicBrainz, it lacks more detailed attributes about artists, such
as the region they come from, a founding date, and associated genres,
all of which are included in MusicBrainz. Also, user behavior can more
easily be linked to MusicBrainz, since Last.fm uses MBIDs to reference
artists. Therefore, MusicBrainz was chosen instead of Discogs.

Besides open data sources, there are industry APIs offering data
for the music domain, e.g. the Spotify API.7 While the information
provided by such APIs may well be of value due to the enormous
scale at which services such as Spotify operate, access is usually very
restricted.

2.4. Music recommender systems

Recommendation systems for music have to face different use cases
and related challenges.

Use cases

In the most common use cases of music recommendation, either
artists or songs are recommended. The latter can be recommended
as a sequence of songs, known as playlist. For creating personalized
playlists, music is selected according to the user’s personal prefer-
ences (Schedl et al., 2018). A similar use case is the automatic playlist
continuation, were songs are added to an already existing playlist,
producing a potentially infinite stream of matching music (Chen, Yang
et al., 2016).

When recommending artists, the main goal is to find an ordered
list of artists that match a user’s profile. A user profile should spec-
ify the user’s interests, which can be defined by the user’s listening
history (Celma, 2010).

Challenges

Recommender systems have to face various challenges, some of
which are particularly relevant in the music domain.

• The cold start problem may occurs when a new item such as an
artist, song or user is added to a system (Schedl et al., 2018).
Collaborative music recommendation systems are based on a
user’s listening history. Because such a history is missing for new
users, or because new artists or songs do not yet appear in user
histories, no recommendations can be made for them.

4 https://www.last.fm/.
5 https://www.dbpedia.org/.
6 https://www.discogs.com/.
7
 https://developer.spotify.com/documentation/web-api/.
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• Diversity and Novelty : especially in the music domain, users want
to discover new bands and music styles they have not listened to
before. Therefore, the diversity and novelty of the recommended
items are a key issue in music recommender systems. Gener-
ally, novelty measures the likelihood that given recommendations
have not been seen by a user before. Diversity considers how
different the elements of a recommendation list are. A list of
recommendations that matches a user’s profile very closely, but in
which all items are very similar to each other, may not be of much
value to the user (Ziegler et al., 2005). In most cases, diversity is
considered as dissimilarity between items in a recommendation
list

• Explainability describes the ability of a recommender system to
give explanations for why a recommendation was given to a user
or why the system thinks the recommendation may be relevant to
a user. Explanations can increase the acceptance of recommen-
dations, improve trust as well as the user’s loyalty towards the
system and altogether lead to higher satisfaction (Celma, 2010).

It should be noted, that further challenges have been discussed
(Schedl et al., 2018; Silveira et al., 2019) that are of less focus in this pa-
per. Temporality addresses temporal aspects of recommender systems.
Often, user preferences change over time, so a user’s older history may
be less interesting. Serendipity deals with the ability of a recommender
system to make surprising recommendations to a user. Popularity bias
describes the effect that more popular items are generally more likely
to be recommended. The popularity bias is closely related to the long
tail data distribution (Abdollahpouri et al., 2019; Kowald et al., 2020).
Considering all items, there are a few very popular items and a huge set
of more or less unknown items. Ignoring the long tail may lead to less
innovation and diversity in music recommendations. The popularity
bias could also lead to further biases and discrimination as recent
research suggest: e.g. existing biases towards white and male artists
may be reinforced by recommender systems prone to the popularity
bias (Werner, 2020).

3. Knowledge graph-based recommendations

Knowledge graph-based recommender systems calculate recommen-
dations on base of a graphical representation of the domain knowledge.
For the music domain, a knowledge graph should contain the key
entities such as artists, songs, labels and genres. To model user prefer-
ences, the graph can also include relationships between users and the
music they have interacted with in the past. Since such user-element
interactions are also used in collaborative filtering approaches, this is
referred to as collaborative knowledge graphs (Wang et al., 2019).

3.1. Knowledge graph concepts

Knowledge graphs are data graphs used to convey knowledge about
the real world, with nodes representing entities of interest and edges
representing different relations between these entities (Hogan et al.,
2022). They focus on knowledge instances rather than a schema that
describes the data and its structure. Usually, knowledge graphs have
a shallow schema with small degree of formalization (Ji et al., 2021;
Paulheim, 2016).

Representing knowledge as a graph has several benefits: Complex
and varying relations between entities can be naturally represented by
the graph edges. In addition, knowledge graphs do not necessarily need
a predefined schema, so data can evolve more flexibly. Furthermore,
methods established in graph theory such as link prediction and finding
shortest paths can be directly applied to knowledge graphs.
4

Fig. 1. Example of graph embedding into the 2-dimensional space.

Path-based approaches

A general approach to calculate recommendations is to find items
that are similar to those that the user has liked in the past. The simplest
definition for determining the semantic similarity between two entities
in a knowledge graph is the length of the shortest path between these
two entities (Guo et al., 2020; Jia et al., 2018). This method, sometimes
simply denoted as the path method, is rather naive and has major
shortcomings: some parts of a knowledge graph, e.g. about a particular
music genre, may be more detailed, so that paths here are longer than
elsewhere in the graph, leading to a bias in the similarity measures.
Furthermore, the path method does not distinguish types of entities and
relations, but some paths between two entities may be more meaningful
than others in regards of semantic similarity. In a music knowledge
graph, for example, artists linked by common countries are arguably
less semantically similar than those linked by the same genre.

There are several approaches to deal with these shortcomings. The
wpath method tries to weight paths based on the type of connected en-
tities and other context information (Jia et al., 2018). Another popular
approach is the use of manually defined meta-paths that represent a
meaningful connection between two nodes in a knowledge graph (Sun
et al., 2011). Meta-paths can also be weighted to give more weight to
certain paths than others (Shi et al., 2015).

While path-based recommendation approaches feel rather natural
and intuitive, it has been shown that they are difficult to apply in
practice (Chicaiza & Valdiviezo-Diaz, 2021). In addition to the manual
effort required to build and maintain the knowledge graph, metapath-
based approaches require further guidance from domain experts to
create and update metapaths.

Embedding-based approaches

The goal of knowledge graph embeddings (KGE) is to simplify
the way a knowledge graph can be processed while maintaining its
structure (Chicaiza & Valdiviezo-Diaz, 2021). Knowledge graph em-
beddings represent entities of a knowledge graph in terms of vectors
in a 𝑛-dimensional space. An example of embedding a graph into the
2-dimensional space is shown in Fig. 1.

The general approach to generating recommendations using entity
embeddings is to represent both users and items by latent vectors.
The distances between the items already known to a user and items
unknown to her can be used to create recommendations. The list of
recommendations contains yet unknown items that are within a short
distance from the user’s previously popular items (Guo et al., 2020).

The main advantage of embedding-based recommendations is that
they allow entities such as items or users to be represented as vectors,
which are often easier and more efficient to process compared to
complex graph structures. Distances in vector space can be calculated
using established distance measures and the vectors could also be used
as feature vectors for further machine learning tasks.
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Fig. 2. Skip gram for representing node vectors in DeepWalk.

3.2. Knowledge graph embeddings

Graph embedding methods can be distinguished into random walk-
based methods (also called graph sampling-based) and factorization-
based methods. Below we will briefly discuss some of them.

3.2.1. Random walk-based methods
Random walk-based methods are based on exploring the neighbor-

hood structure in a graph. They are well suited to capture such a
structure, i.e. nodes close to each other in a graph get similar vector
representations. Since they operate in local neighborhoods, they are
especially useful in cases where a graph can only be partially observed
or is too large to process in its entirety (Goyal & Ferrara, 2018).

DeepWalk
DeepWalk (Perozzi et al., 2014) is inspired heavily by the natural

language processing approach Word2vec (Mikolov, Chen et al., 2013;
Mikolov, Sutskever et al., 2013) and applies the same idea to graphs
instead of text. As a basic principle, it uses random Walks to obtain
sets of neighboring nodes in the graph. Random walks traverse a graph
randomly from a given target node. During a walk, paths are created by
uniformly choosing a neighbor of the last visited node as the next node
on the path until a walk length 𝑛 is reached. Random walks are repeated
for each node 𝑚 times, so that a graph of 𝑁 nodes is transformed into
𝑁 ⋅ 𝑚 paths of length 𝑛 containing the nodes and their neighbors. The
node paths generated by the random walks are then used to train a
neural network that can predict the probability of reaching a node 𝑣𝑖 if
certain neighboring nodes have been visited during the random walks.
To achieve this, sequences of nodes contained in a moving window of
size 𝑤 in the node paths are considered as input to the neural network.
The neural network follows the so-called skip gram model, a simple
neural network with a single hidden layer. The trick of the skip gram
model is that the neural network is not used for prediction, but that
the learned weight matrix of the hidden layer is taken as the vector
representation of the nodes. After training, the weights of the hidden
layer are taken as latent vector representations of the graphs nodes. The
number of neurons in the hidden layer determines the dimension of the
resulting node vectors. Fig. 2 illustrates how the weight matrix of the
hidden layer is used as the vector representation of node. For more on
DeepWalk see Perozzi et al. (2014).

Node2Vec, Diff2Vec and Walklets
Node2Vec (Grover & Leskovec, 2016) is an extension of Deep-

Walk that introduces biased random walks, meaning that decisions
about which node to visit next are no longer completely random. This
bias is implemented by parameters which allow the random walk to
alternate between breath-first and depth-first graph search, with the
goal of preserving community structure and structural equivalence.
This results in nodes being strongly connected with each other (com-
munity structure) as well as nodes having similar roles in communities
(structural equivalency).
5

Another random walk-based approach is Diff2Vec (Rozemberczki
& Sarkar, 2018), which addresses the problem that random walks prop-
agate very slowly and revisit the same nodes multiple times, resulting
in redundant information. The proposed solution of Diff2Vec is to
create so-called diffusion graphs of the neighborhood of a target node
𝑣 by iteratively adding random neighbor nodes to a graph initialized
with node 𝑣. In those diffusion graphs, Euler tours are computed to
obtain node sequences covering all nodes of the diffusion graph. This
approach should result in better coverage of a node’s neighborhood,
allowing Diff2Vec to work with smaller neighborhood samples than
other random walk-based methods.

Walklets (Perozzi et al., 2017) is a variant of DeepWalk in which
multiple scales of relationships between nodes are explicitly taken into
account. In DeepWalk, the proximity between two nodes not directly
connected is only implicitly represented via paths through other nodes.
Instead, Walklets introduce skipping steps in random walks to allow
higher order proximity representation.

Besides the methods discussed so far, the NetMF method (Qiu et al.,
2018) unifies Node2Vec, DeepWalk and two additional approaches
(LINE and its extension PTE) into a matrix factorization framework.

3.2.2. Factorization-based methods
The general idea of factorization-based embedding methods is to

represent a graph in a matrix and factorize the matrix to obtain
embeddings. Factorization-based methods differ in the type of matrix
in which a graph is represented and the method used to factorize the
matrix.

An early factorization-based embedding method is laplacian
eigenmaps (Belkin & Niyogi, 2001). It represents a graph by its
laplacian matrix, which is calculated by subtracting the adjacency
matrix of a graph from its degree matrix. Then, the laplacian matrix
is factorized using eigen-decomposition. Generally, this approach tries
to minimize the distance between node embeddings of nodes which are
close to each other in the graph.

Geometric Laplacian Eigenmap Embedding (GLEE) is a
novel method based on the original idea of laplacian eigen-
maps. But unlike the latter, which aims to minimize the distances
of embeddings for close nodes in the original graph, GLEE tries to
find embeddings by leveraging the so-called simplex geometry of the
laplacian (Torres et al., 2020).

GraRep is a method that combines the idea of random walks with
matrix factorization (Cao et al., 2015). The model captures the different
k-step relations between graph nodes for different values of 𝑘, to create
a global transition matrix. The resulting matrix is factorized using
singular value decomposition (SVD).

Instead of utilizing eigen-decomposition as in Laplacian Eigen-
maps or singular value decomposition as in GraRep, the NMFADMM
method (Sun & Fevotte, 2014) makes use of non-negative matrix fac-
torization. BoostNE (Li et al., 2019) is a factorization-based method
that allows multiple embeddings to be learned and combined into a
final embedding, using an approach motivated by the gradient boosting
learning algorithm. RandNE (Zhang et al., 2018) applies Gaussian ran-
dom projection in the factorization which has been proven to be more
computationally efficient than other methods and enables operation on
very large graphs.

Besides random walk and factorization-based graph embeddings,
there are several other types of embedding methods. NodeSketch
(Yang et al., 2019) is a method that employs a data-independent
hashing technique called sketching to generate embeddings. Also worth
mentioning are TransE (Bordes et al., 2013), as well as methods using
graph convolutional networks (GCN) to learn graph embeddings (Goyal
& Ferrara, 2018). GCNs are applied in R-GCN (Schlichtkrull et al.,
2018), and in ConvE (Dettmers et al., 2018).

Please note that a detailed presentation of all these approaches is
beyond the scope of this paper, so we refer the reader to the original

papers.
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Fig. 3. Component diagram of EARS.

Fig. 4. The Data Processor component.

4. Knowledge graph Embedding-based Artist Recommender Sys-
tem (EARS)

The general design of EARS approach is depicted in Fig. 3. Follow-
ing, different components are presented along with their corresponding
functioning.

4.1. Data processor

The Data Processor component takes raw data as its input,
extracts and processes domain relevant data and stores the latter in
a local database for subsequent use by other components. As already
mentioned in Section 2.3, MusicBrainz was chosen as the main data
source for music meta-data and its relations, as well as Last.fm provid-
ing user listening behavior. The general data flow of the component
can be seen in Fig. 4.

MusicBrainz data was dumped from the MusicBrainz database, in-
cluding all main entities and their relations. The Last.fm dataset pro-
vides information regarding the listening history of thousand of Last.fm
users. This data contains users, artist IDs and the number of plays each
user has played a given artist. The artist IDs are MusicBrainz IDs, which
makes it easy to merge the two datasets.

Fig. 5 presents the database schema resulting from the Data Pro-
cessor workflow. This includes artists, genres, areas, albums, labels,
users and their attributes and relations.8

Since the dataset contains about two million artists and over a
hundred thousand users, labels, and areas, a sample of users is drawn
to reduce the data size and make the subsequent steps, especially the
knowledge graph constructing and the embedding calculation, feasible.

8 Note that Last.fm entries with MBIDs that do not exist in the MusicBrainz
database are not considered. This might occur because the MusicBrainz data
is up-to-date while the Last.fm dataset was created in 2010. Some MBIDs may
have changed, merged or removed, resulting in obsolete entries in the Last.fm
dataset.
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Fig. 5. Schema of the local database.

Fig. 6. Structure of the knowledge graph.

The data size can be reduced by excluding those users who rarely
used Last.fm and whose data is therefore less meaningful than that of
more frequent users. Users relevant to the dataset can be defined by a
minimum number of different songs or different artists they must have
listened to. Moreover, the total sample size can be specified, defining
a certain percentage of the original data to be randomly sampled.

4.2. Graph builder

To build the knowledge graph, a MusicData object is constructed
from the data in the Data Processor database, which is then used
to create a graph object by using the networkx library.9

Fig. 6 shows the structure of the knowledge graph. Nodes are
represented by 2-tuples with a unique id and a dictionary of their
attributes. Node attributes include their type (e.g. user, artist) and the
related names (e.g. user name, artist name). For edges, the ids of the
connected nodes are stored along with attributes that indicate the type
of the represented relationship. The networkx library allows saving the
graph in a variety of formats, including graphML.

As described in Section 4.1, the knowledge graph contains only a
subset of all users in the Last.fm dataset. Accordingly, artists and related
entities are only included in the knowledge graph if there is at least one
user who has listened to that artist. The resulting knowledge graph can
be viewed as a subgraph of the overall knowledge graph, including only
those entities that are connected to the contained users.

Interestingly, the resulting graph forms some meaningful clusters
that differ by genre and area: Artists tend to be located near the genre to
which they belong. The same applies to areas. As an example, Finland,
which is known for its metal scene, is located next to the genre metal
and right in the center of metal bands.

9 https://networkx.org/.

https://networkx.org/
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Fig. 7. Embedding example and its resulting embedding object.

The resulting graph is unweighted and undirected. All relations are
unambiguous in its semantic meaning with respect to direction. Note
that the undirected memberOf relation can only describe that two artists
are related. To describe who is an individual artist and who is a band
would require a directed relationship, which is probably not worth
the additional complexity that a directed graph would introduce. The
number of times an artist has been played by a certain user is integrated
by another mechanism, as discussed later in Section 4.4.

4.3. Graph embedder

The purpose of the Graph Embedder component is to take a
graph and compute an embedding which represents the nodes of the
graph as vectors in a 𝑛-dimensional space. The results are saved in
an Embedding object that stores a list of the embedding vectors and
implements mappings from node embeddings to their node attributes
and, vice versa, from artist MBIDs to node embeddings. Because an
artist recommender requires only artists and their proximity to each
other, the Graph Embedder component discards all non-artist nodes
embeddings.

After experimenting with different graph embedding libraries,
karateclub10 was chosen for its many available embedding methods
and its tight integration with networkx. An example of an embedding
process is shown in Fig. 7. For illustration purposes, the artist nodes
in the knowledge graph are mapped to a 2-dimensional space.11 Each
point in the vector space represents an embedding of an artist node.

4.4. Recommender

The main task of the Recommender component is to calculate
recommendations for a certain user based on the embedding computed
by the Graph Embedder. Furthermore, the Recommender should be
able to provide explanations for a given recommendation by finding
paths in the underlying knowledge graph. Recommendation process
and the related data flow is shown in Fig. 8.

4.4.1. User profiles
A key issue of any recommender system is modeling the user

profiles from the given user data. For music recommendations, a user’s
preferences can be characterized by the artists in her listening history,
respectively their corresponding embeddings.

Fig. 9 shows a user profile represented by the corresponding graph
embeddings. A certain user (depicted as blue circle) has a listening his-
tory containing different artists (depicted as red circles). The example
shows a typical Last.fm user who is often interested in very different
music genres. In this example, the set of the artists she has already
heard can be categorized as jazz, folk, rock and classical music.

10 https://karateclub.readthedocs.io.
11 In the implementation, of course, much higher dimensional vectors are

used.
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Fig. 8. The Recommender component.

Fig. 9. Example: user profile and recommendations.

Fig. 10. The four steps of the recommendation process.

It is obvious that a suitable music recommender should take this
diversity of interests into account. To enhance end-user satisfaction, a
variety of artists should be recommended, representing all genres of
music previously listened to. In Fig. 9 the green circles show some rec-
ommended artists that fit well to the respective clusters. This approach
is in line with user profile partitioning presented in Zhang and Hurley
(2009), where recommendations are based on user profile clusters.
EARS follows the same idea as we will discuss in more detail in the
next subsection.

4.4.2. Recommendations
Given a user 𝑢 for whom a recommendation should be made,

the recommendation process consists of four main steps, as shown in
Fig. 10: (i) getting a user’s listening history from the database; (ii)
finding similar artists based on the produced graph embedding; (iii)
aggregating the similar artists to a single list of recommendations and;
finally (iv) applying diversification to that recommendation.

https://karateclub.readthedocs.io
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Fig. 11. Example of data in the recommendation process.

(I) get user history. The user history 𝐻(𝑢) of user 𝑢 is the set of all artists
that she has listened to in the past,

𝐻(𝑢) = {𝑎1, 𝑎2,… , 𝑎ℎ𝑢} (1)

where 𝑎𝑖 ∈ 𝐴 is an artist from the set of all artists 𝐴 known to the
system, and ℎ𝑢 is the number of artists that 𝑢 has heard so far.

(Ii) find similar artists. The goal of this step is to find for each artist
𝑎 ∈ 𝐻(𝑢) from the user history 𝐻(𝑢) the list 𝐶𝐾 (𝑎) of the 𝐾 most similar
artists to artist 𝑎.

𝐶𝐾 (𝑎) = [𝑐1, 𝑐2,… , 𝑐𝐾 ] (2)

where the order is descending by the distances 𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑎) between the
artists 𝑐𝑖 and 𝑎. The function 𝑑𝑖𝑠𝑡() corresponds to a distance metric in
the vector space of graph embeddings, such as the Euclidean distance.
Each 𝑐𝑖 from 𝐶𝐾 (𝑎) can be considered as a recommendation candidate
matching an already known artist 𝑎.

The underlying idea is that artists that are close to each other
in the knowledge graph are similar because they have relationships
to the same or similar entities (e.g. label, genre, area, user). As the
graph embedding preserves the structural information of the knowledge
graph, artists close to each other in the graph also have embedding
vectors close to each other in the vector space. The structure of the
data involved in the recommendation process is illustrated by Fig. 11.

For querying nearest neighbors efficiently in a higher-dimension
space, a 𝗄-d tree is used (Bentley, 1975), applying the idea of binary
search trees to 𝗄-dimensional spaces. A 𝗄-d tree splits a 𝗄-dimensional
space at each node, meaning that points to the left of a splitting
hyperplane are located in the left subtree of that node and points on
the other side of the hyperplane to the right. Utilization of the tree
properties allows to find nearest neighbors in 𝑂(𝑙𝑜𝑔(𝑁)) where 𝑁 is
the total number of nodes in the tree. The 𝗄-d tree is initialized once
with the embedding vectors of artist nodes when the Recommender
component is initialized. For the nearest neighbor search, we use
Euclidean distance as a metric for computing similarities.12

The number 𝐾 of retrieved nearest neighbors of an artist already
known by the user is one of the Recommender parameters and has
influence on the recommendation results. Fig. 12 shows an example of
querying the 𝗄-d tree showing the 𝐾 = 10 most similar artists to John
Lennon.

(Iii) aggregate similar artists. In the previous step, for each artist 𝑎 ∈
𝐻(𝑢) in the listening history of user 𝑢, a separate list of similar artists
𝐶𝐾 (𝑎) is created by a 𝗄-d tree query. These separate lists of artists must
now be combined into a single list of ordered recommendations.

To assess the extent to which a candidate artist 𝑐 is suitable for
recommendation, its distances to the artists in the user history are
calculated. The calculated distances must be scaled to avoid being
skewed by artists in denser areas of the vector space, which naturally

12 Of course also other metrics such as cosine similarity can be applied.
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Fig. 12. The 10 nearest artists to John Lennon in the 𝗄-d tree.

should have smaller distance values to each other. Considering the set
𝐶𝐾 (𝑎) of the 𝐾 most similar artists to an artist 𝑎 from the user history,
we applied min–max scaling, resulting in a score value within the range
[0, 1], as shown in Eq. (3).

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑎) = 1 −
𝑑𝑖𝑠𝑡(𝑐, 𝑎) − 𝑚𝑖𝑛(𝐶𝐾 (𝑎))

𝑚𝑎𝑥(𝐶𝐾 (𝑎)) − 𝑚𝑖𝑛(𝐶𝐾 (𝑎))
(3)

For the function 𝑑𝑖𝑠𝑡() we have chosen the Euclidean distance, as
mentioned before. The functions 𝑚𝑖𝑛() and 𝑚𝑎𝑥() return the minimum
and maximum distance values, respectively, in the set of similar artists
𝐶𝐾 (𝑎). Finally, we subtract this scaled value from 1 to give the most
similar artist a high score of 1 and the furthest a score of 0.

It seems reasonable that artists who are similar to the favorite artists
of a user will receive higher scores. To evaluate the popularity of
an already heard artist 𝑎 for user 𝑢, the popularity score 𝑝_𝑠𝑐𝑜𝑟𝑒 is
calculated, which multiplies the score with a popularity factor 𝑝𝑢(𝑎) as
shown in Eq. (4).

𝑝_𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑎, 𝑢) = 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑎) × 𝑝𝑢(𝑎)
𝑤 (4)

where 𝑝𝑢(𝑎) is the scaled number of times user 𝑢 has played artist 𝑎.
The 𝑝𝑢(𝑎) values are also scaled with respect to the number of plays
in the listening history of user 𝑢 by using min–max scaling to obtain
values in the range [0.1, 1].13 To control the impact of 𝑝𝑢(𝑎) on the
score, a weight 𝑤 ∈ [0, 1], which serves as an exponent, is used. Since
𝑝𝑢(𝑎) ∈ [0.1, 1], smaller values of 𝑤 generally have a smaller effect on
the p_score because for small 𝑤, 𝑝𝑢(𝑎)𝑤 approaches 1.

Artists can appear in multiple lists of similar artists 𝐶(𝑎), i.e., they
are similar to more than one artist 𝑎 in the user’s listening history. For
example, a user 𝑢 may have listened to The Beatles and Bob Dylan in
the past. For both, The Beatles and Bob Dylan the list of similar artists
are retrieved and their scores are calculated. The results can show that
Paul Simon is a similar artist to both The Beatles and Bob Dylan.

To calculate the total score that a candidate artist 𝑐 has for a given
user 𝑢, its 𝑝_𝑠𝑐𝑜𝑟𝑒𝑠 for all artists from the user history are just summed
up, as shown in Eq. (5).

𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑢) =
∑

𝑎∈𝐻(𝑢)
𝑝_𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑎, 𝑢) (5)

In terms of the given example, 𝑝_𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑢𝑙𝑆𝑖𝑚𝑜𝑛, 𝐵𝑜𝑏𝐷𝑦𝑙𝑎𝑛, 𝑢) and
𝑝_𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑢𝑙𝑆𝑖𝑚𝑜𝑛, 𝑇 ℎ𝑒𝐵𝑒𝑎𝑡𝑙𝑒𝑠, 𝑢) would be added to get 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒
(𝑃𝑎𝑢𝑙𝑆𝑖𝑚𝑜𝑛, 𝑢).

To produce the final recommendation list 𝑅(𝑢) for user 𝑢, the
𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 of each candidate artist 𝑐 included in the set 𝐶𝐾 is calculated,
where 𝐶𝐾 =

⋃

𝑎∈𝐻(𝑢) 𝐶
𝐾 (𝑎) is the set of all artists that appear in at

least one 𝐶𝐾 (𝑎) of any artist from the user history. Finally, the ordered
recommendation list 𝑅𝐾 (𝑢) for user 𝑢 contains 𝐾 recommended artists

13 with a value of 1 for the most played artist. Note that we used a lower
bound of 0.1 instead of 0.0 in the scaling to avoid null scores due to small
number of plays.



Expert Systems With Applications 229 (2023) 120347N. Bertram et al.
Fig. 13. Calculation of an example recommendation.

in descending order according to their 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 values, as shown by
Eq. (6).

𝑅𝐾 (𝑢) = [𝑟1, 𝑟2,… .𝑟𝐾 ] (6)

A complete example of the recommendation process is shown in
Fig. 13. Here, the considered user 𝑢 has listened to the artists The
Beatles, Metallica and Bob Dylan, playing each of them a certain number
of times. First, for each of these three artists, the list 𝐶𝐾 (𝑎) of the
most similar artists with their corresponding distances is obtained by
querying the 𝗄-d tree. For example, similar to The Beatles are John
Lennon with a distance of 9.6, Paul McCartney with a distance of 9.8 and
so on. Next, the number of plays of each artist 𝑎 out of 𝐻(𝑢) are scaled
to calculate the popularity factor 𝑝𝑢(𝑎). Then, for each artist 𝑐 of 𝐶𝐾 (𝑎),
the 𝑝_𝑠𝑐𝑜𝑟𝑒𝑠(𝑐, 𝑎, 𝑢) are computed. In the final step, 𝑝_𝑠𝑐𝑜𝑟𝑒𝑠(𝑐, 𝑎, 𝑢) are
aggregated to the 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒𝑠(𝑐, 𝑢). Since Paul Simon is a similar artist
to both The Beatles and Bob Dylan, the two resulting 𝑝_𝑠𝑐𝑜𝑟𝑒𝑠 are added
to the 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒(𝑃𝑎𝑢𝑙𝑆𝑖𝑚𝑜𝑛, 𝑢). This example illustrates the process in
a very small scale of just ℎ𝑢 = 3 artists in the user’s history with 𝐾 = 4
of similar artists to retrieve.

(Iv) diversify recommendation. The final and optional step is the di-
versification of the recommendations, as illustrated in Fig. 10. Diver-
sification is applied by applying the Bounded Greedy Selection
(BGS) algorithm, which makes use of intra-list similarities to increase
diversity without sacrificing accuracy (Smyth & McClave, 2001). BGS
combines the idea of a Bounded Random Selection and Greedy
Selection.

Algorithm 1 Bounded Greedy Selection
𝑢 ← considered user
𝐾 ← length of the recommendation list
𝑏 ← bound of artists to consider
𝑅 = 𝑅𝑏∗𝐾 ← 𝑏 ∗ 𝐾 recommended artists accord. to Eq. (6)
𝐷 ← 𝑅[0], move best recommendation to result set 𝐷
for 𝑖 in {1, 2, ..., 𝐾} do

for each 𝑟 ∈ 𝑅 calculate 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒(𝑟, 𝑅, 𝑢)
sort 𝑅 by 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒(𝑟, 𝑅, 𝑢)
𝐷 ← 𝐷 + 𝑅[0]
𝑅 ← 𝑅 − 𝑅[0]

end for
return 𝐷

Alg. 1 shows how BGS works. The algorithm is initialized with the
considered user 𝑢, the length of the recommendation list 𝐾 and a bound
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𝑏. Then, a list 𝑅 of 𝑏 ∗ 𝐾 recommendable artists according to Eq. (6)
is used as a candidate set for the recommendation list. That is, it takes
into account a multiple of the 𝐾 recommendations that are finally given
to the user 𝑢.

The basic idea of BGS is, to select out of 𝑅 those 𝐾 artists that
have the best 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒. These form the result set 𝐷 with 𝐾 artists
that provide a tradeoff between similarity to the user’s listening history
and diversity. Using Eq. (7) the 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 for each artist 𝑟 in 𝑅 is
calculated by combining the 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 from Eq. (5) and the 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
metric as defined by Eq. (8).

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒(𝑟,𝐷, 𝑢) = 𝑡𝑜𝑡𝑎𝑙_𝑠𝑐𝑜𝑟𝑒(𝑟, 𝑢) ∗ 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑟,𝐷) (7)

The 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑟,𝐷) of an artist 𝑟 is the average inverse scores to all
other artists 𝑑𝑖 in the result set 𝐷, as calculated in Eq. (8). This means
that, on average, a highly diverse artist is as different as possible from
all other artists already included in the result set 𝐷.

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑟,𝐷) =

∑

𝑑𝑖∈𝐷(1 − 𝑠𝑐𝑜𝑟𝑒(𝑟, 𝑑𝑖))

|𝐷|
(8)

Finally, the set 𝑅 is sorted according to the 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 and the
artists with the highest score (𝑅[0]) is moved from 𝑅 to the result set
𝐷.

4.4.3. Explanations
The knowledge graph used in the recommendation system can be

used to provide explanations for recommendations. As can be seen in
Fig. 8, the explanations are computed from the knowledge graph 𝐺 and
the recommendations from the graph embedding of 𝐺.

The basic idea is that paths between an artist that a user 𝑢 has
already listened to and a newly recommended artist can serve as an
explanation for why 𝑢 might like this artist. For example, both artist
nodes could be connected to the same label, genre or area.

A few decisions have been made to produce rather simple but
still meaningful recommendations: edges between users and artists,
representing which user listened to which artists, have been removed
to keep explanations music-specific instead of ‘‘similar users also liked
...’’-type of explanations.

Furthermore, only paths of length one are considered, i.e. instead of
long (and potentially meaningless) paths, only common neighbors are
looked at. Common neighbors result in explanations such as ‘‘You may
like X because you listened to Y, both of which are signed to label L and
from country C ’’.

To keep it clear and simple, the maximum amount of recommen-
dations for each artist can be set. Which explanations are selected can
be determined by prioritizing certain relationships. For example, if the
memberOf relation has first priority, it will always be displayed first if
such a relationship exists. As a default, the priority is set to member of,
label, genre, area in that order. The rationale behind that order is that
more specific and distinguishing connections are prioritized since they
probably convey a deeper meaning to a user.

To give an idea how EARS works, Fig. 14 shows a generated list
with recommendations for a randomly chosen Last.fm user. At the
top, artists which the user listened to in the past are listed. In the
following recommended artists and explanations for why the artist may
be of interest to the user are listed. Artists are ordered in decreasing
order with the most relevant in first place. The actual length of the
recommendation list is set to five in this example but could be longer
in practice.

5. Experimental evaluation

In this section, we present an exhaustive set of experiments to test
the suitability of the EARS approach.

To evaluate the quality of recommendations, we check if EARS is
able to recommend artists that appear in the user’s history. Here we
proceed as follows: Each user 𝑢 taken from the Last.fm dataset has a
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Fig. 14. Explained recommendation for a random Last.fm user.

certain number of different artists in her listening history 𝐻(𝑢). For
example, user 𝑢 might have listened to 50 artists. This set of artists
is randomly split by half between training data 𝐻𝑡𝑟𝑎𝑖𝑛(𝑢) and test data
𝐻𝑡𝑒𝑠𝑡(𝑢). EARS now uses the 25 artists from the training set 𝐻𝑡𝑟𝑎𝑖𝑛(𝑢)
as user profile and creates from them the result set 𝐷, containing
e.g. 𝐾 = 10 recommended artists. Then it is checked how many of the
artists from 𝐷 also appear among the 25 artists of 𝐻𝑡𝑒𝑠𝑡(𝑢). If all 10
artists from 𝐷 occurred in 𝐻𝑡𝑒𝑠𝑡(𝑢), this would imply a perfect precision
of 1.0.

Different metrics will be considered to measure the performance of
the approach. We will use some traditional metrics, such as precision,
recall. Due to the nature of the scenario we use precision@k and recall@k
only accounting for the first 𝑘 artists resulting from the recommenda-
tion process. In the same line, we also calculate false-positive-rate@k,
defined as the ratio between the number of false positive and the
number of all negative cases of the first 𝑘 items returned by the
recommender, as well as Mean Average Precision (MAP).

We also compute the Receiver Operating Characteristic (ROC) curve
and its associated Area Under the Curve (AUC), which represents the
likelihood that a random relevant item is ranked higher than a random
irrelevant one. In addition to these accuracy metrics, diversity and
novelty metrics are calculated as well.

In order to obtain meaningful results, these are calculated by av-
eraging the data obtained from several runs with different random
samples, i.e. a number of 𝑛 users is randomly selected 𝑚-times. An em-
pirical evaluation of the recommender parameters is also carried out.
After that, an exhaustive evaluation of the EARS recommender systems
is provided, taking into account the different metrics aforementioned.

5.1. Knowledge graph setup

As discussed in previous sections, the creation of the knowledge
graph is controlled by a set of parameters. To find suitable parameter
values, the Last.fm data was analyzed. Fig. 15 gives insights on how the
number of artists and the total number of plays are distributed for users
in the Last.fm data. It shows: (i) how many users listened to a given
number of artists (Fig. 15(a)) and; (ii) how many users have a given
number of plays (Fig. 15(b)). It can be seen that the number of artists
per user forms a normal distribution with a mean value around 50
artists. The number of plays per user forms an exponential distribution,
showing that the majority of users recorded very few plays, while only
few users played a lot of songs.

One goal of the parameter selection was to considerably reduce the
size of the knowledge graph while preserving the significance of the
data. Since users with few artists or plays are more likely to provide an
10
Fig. 15. Insights into the Last.fm data.

Table 1
Parameters for data sampling.

Data sampling parameters

Sample size 0.05
Minimal number of plays 20.000
Minimal number of user artists 40
Test data split 0.5

Table 2
Statistics of the generated knowledge graph.

Total nodes Artists Labels Areas Genres Users

26,135 19,953 2657 86 626 2351

Fig. 16. Excerpt of the generated knowledge graph.

incomplete picture regarding their listening behavior, it was decided to
omit such users. The minimum number of artists per user was set to 40
and the minimum number of plays was set to 20,000. The sample size
was set to 0.05 resulting in a data volume which allows building the
knowledge graph and, in particular, computing the graph embeddings
in a reasonable amount of time. The split of the test data was set
to 50%, resulting in an equal amount of training and test data. An
overview of all parameter values is listed in Table 1.

The sampled data generated by the Data Processor is used by
the Graph Builder to build a knowledge graph and export the graph
as a graphML file. The number of nodes by type is listed in Table 2.

Fig. 16 shows an excerpt of the generated knowledge graph with
about 8000 nodes and 35,000 edges, which was created with the Gephi
tool.14

5.2. Embedding methods evaluation

Since the graph embedding is a key aspect of the EARS recom-
mender, it was decided to evaluate a series of different embedding
methods to empirically choose the most suitable one. The embedding
methods are first applied with the default parameters provided by the

14 https://gephi.org.

https://gephi.org
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Table 3
Parameters for evaluating embedding methods.
Recommender parameters

Top-𝑘 per User Artist 100
Plays weight 𝑤 0

Evaluation parameters

Number of runs 𝑚 5
Users per run 𝑛 100

Table 4
Results of embedding method evaluation.

Method p@10 AUC MAP Time (s)

BoostNE 0.048 0.812 0.020 757
DeepWalk 0.170 0.862 0.069 302
Diff2Vec – – – >3600
GLEE 0.106 0.892 0.056 27
GraRep – – – >3600
LaplacianEigenmaps 0.086 0.867 0.045 734
NetMF 0.130 0.886 0.067 46
NMFADMM 0.001 0.737 0.003 47
Node2Vec – – – >3600
NodeSketch 0.033 0.785 0.014 217
RandNE 0.100 0.836 0.040 4
SocioDim 0.074 0.863 0.031 2013
Walklets 0.070 0.890 0.038 209

karateclub Python package, assuming that the defaults are reasonable
chosen. Thus, results derived can give a good hint about which meth-
ods are promising and deserve further inspection. A time limit for
the embedding computation was set to one hour. Since the size of
the knowledge graph is already limited, it was decided that methods
that take longer than this amount of time are likely to be rather
inappropriate for larger graphs.

The value of 𝐾 for Top-𝐾 selection was set to 100. The weight 𝑤
or the popularity factor was set to 0, which results in 𝑝𝑢(𝑎)𝑤 = 1
lways, completely eliminating the popularity factor for calculating
ecommendations. The effect of weight 𝑤 on the recommendation
esults will be discussed later. As evaluation parameter, the number of
uns was set to 5 and the users evaluated per run to 100. A summary of
he parameter chosen for evaluating embedding methods can be seen
n Table 3.

Table 4 and Fig. 17 summarize the embedding method evaluation.
able 4 shows values for precision@10 (p@10), AUC, Mean Average
recision (MAP) and the execution times.15 Fig. 17 shows plots of the
OC, a zoomed-in version of the ROC curve and the precision–recall
urve. The zoomed-in ROC shows only the lower-left section of the
hole curve, providing insights about how the curve behaves for small

alse-positive rates.
Diff2Vec, GraRep and Node2Vec took more than one hour and

he embedding process was abandoned without further evaluation.
In terms of promising results, DeepWalk stands out by having the

est values for precision@10 and MAP. Regarding AUC, other methods
urpass DeepWalk. The zoomed-in ROC curve in Fig. 17(b) shows that
eepWalk outperforms other methods for lower false-positive rates.
imilarly, up to a certain point, DeepWalk performs better in terms of
he precision–recall curve.

Looking at the rest of the embedding methods, NetMF stands out
ith the second best evaluation results behind DeepWalk. Further-
ore, NetMF needs considerably less time for embedding the graph

ompared to DeepWalk. As it was expected, RandNE is very fast
ompared to all other methods while still producing rather good results.

It was decided to run some further experiments regarding NetMF
arameters to see if parameter tuning could improve the results con-
iderably. This seemed especially interesting, because for both, NetMF

15 Computed on a 2,7 GHz Intel Core i5, 8 GB RAM.
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Table 5
Evaluation of NetFM with different dimensions.

Dimensions p@10 AUC MAP Time

NetMF 32 0.129 0.886 0.067 46
NetMF 64 0.141 0.888 0.070 76
NetMF 128 0.142 0.882 0.069 126

and DeepWalk, the dimensionality of the resulting embedding vectors
can be set. For DeepWalk, the default dimensionality was 128, while
for NetMF it was 32, raising the question whether NetMF with higher
dimensional embeddings could produce equal or better results than
DeepWalk. Table 5 shows evaluation results for NetMF with 32, 64
nd 128 dimensions. As expected, the time needed increases with more
imensions. Furthermore, the results did improve with 64 dimensions
ompared to 32 dimensions. However, NetMF could not reach the
esults of DeepWalk even with increased embedding dimensions.

When evaluating the embedding methods, DeepWalk proved to be
he most promising method in terms of finding a trade-off between the
ifferent metrics and execution time, and was therefore selected as the
mbedding method for further experiments.

.2.1. DeepWalk parameter evaluation
Experiments with the DeepWalk parameters showed that changes

o most of the default karateclub parameters, such as the dimensionality
f embeddings, did not significantly improve the results. Only longer
alks gave better results, but also caused longer computation times.
herefore, different values for the walk number and the walk length
re evaluated below. The remaining parameters of the experiments are
imilar to those used before and shown in Table 3 but with 200 instead
f 100 users per run.

First, the walk length was varied with a fixed walk number of
0 walks per node. Embeddings were computed using DeepWalk for

increasing walk lengths from 10 to 150 with a step size of 10. The
results can be seen in Fig. 18.

Precision increases steeply up to a precision@10 of 0.15 at a walk
length of 50 and then more gently up to 0.17 at a walk length of
100, after which there is no further improvement (see Fig. 18(a)).
AUC increases relatively steadily from 0.840 to around 0.865 (see
Fig. 18(b)). Results for MAP look similar to the precision@10 curve (see
Fig. 18(c)). However, the actual values double from 0.035 at a walk
length of 20 to 0.07 at around a length of 90. After that, MAP does not
seem to increase significantly. At a walk length of 10, the MAP value
is a little higher than expected, which could be caused by a statistical
outlier. The increase in execution time is linear with increasing walk
length. Doubling the walk length results in about twice the amount of
time needed to compute the embedding (see Fig. 18(d)). Since both
precision@10 and MAP seem to hit an upper limit at a walk length
of about 100 and computation time should also be considered, a walk
length of 100 was chosen for the following experiments.

An analysis of the number of random walks for DeepWalk was
also carried out. The results of the evaluation are presented in Fig. 19.
As expected, all metrics raise when increasing the number of walks.
AUC and MAP may hit a ceiling at around 80 walks, but further
experiments with even more walks would be needed to be certain
about that. precision@10 increases from about 0.162 at 10 walks to
0.172 at 100 walks. AUC starts at around 0.860 and ends at 0.880.
Regarding MAP, values start at 0.072 at 10 walks and end up at
0.082 at 100 walks. Time increases linearly with the number of walks,
again roughly doubling the time when doubling the number of walks.
Since embedding time already went beyond one hour for 100 walks
of length 100 it was decided to stop evaluation at 100 walks. Results
for precision@10 indicate that values may have increased further for
walk numbers beyond 100. Furthermore, evaluation results for AUC
and MAP suggest that a ceiling was possibly hit at a walk length of 80.
Based on the results of DeepWalk parameter evaluation, a DeepWalk
mbedding with 100 walks and a walk length of 100 was chosen as the

raph embedding for all further experiments.
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Fig. 17. Evaluation results of embedding method evaluation.
Fig. 18. Evaluation of DeepWalk walk length in relation to accuracy.
Fig. 19. Evaluation of DeepWalk walk number in relation to accuracy.
5.3. Evaluation of top-𝐾 parameter

The 𝐾 parameter for top-𝐾 selection was evaluated starting from
1 up to 200 with step size 5. The results of the top-𝐾 evaluation can
be seen in Fig. 20. MAP increases steeply from around 0.03 with top-
𝐾 at 1 to about 0.075 with 𝐾 being set to 30. It reaches a ceiling
slightly above with 𝐾 = 50 with a MAP of 0.08. Thereafter, MAP stays
relatively stable up to about 𝐾 = 160, from where on performance in
terms of MAP seems to be getting worse again. What can be said with
confidence is, that MAP does not increase substantially after a 𝐾 of 50.
Regarding AUC, measurements also go up rather steep from 0.81 with
𝐾 = 1 to 0.87 with 𝐾 = 60. With higher values of 𝐾 AUC seems to still
increase, but not as significantly any longer. Querying more artists for
the recommendation, which will most likely increase performance at
higher values of 𝐾. precision@10 goes up rapidly to 0.165 with 𝐾 = 10.
Considering the discussed results, setting 𝐾 = 75 seems a reasonable
choice. MAP has hit its (assumed) ceiling by that point, AUC has done
its initial climb and precision@10 is at around its best before values
start to decline again.

5.4. Evaluation of popularity weight parameter 𝑤

For the popularity weight 𝑤, evaluation started with a value of 0.0
and was incremented in steps of 0.05 up to 1.0, see Fig. 21. Regarding
AUC, the value of 𝑤 does not seem to have any real effect on MAP and
precision@10. There are no clear trends and the two highest values
at 0.6 and 0.7 could well be outliers due to the random selection of
12
users. However, it looks like there may be a little upward trend towards
the middle of the graphs followed by a slight drop off. Thus, choosing
𝑤 = 0.5 may improve the recommendations a bit while most likely not
leading to any worse recommendations. In general, it seems that in our
approach the popularity of an artist for a user does not significantly
affect the quality of recommendations. A possible explanation for this
behavior could be that artists less often played by a user are just as
important in representing the users preferences as the most played ones.

5.5. EARS evaluation

After trying to find optimal values for the different technical param-
eters of the recommender approach, the overall quality of the EARS
system shall be investigated in more detail. Two types of recommenda-
tion approaches were examined, using the music knowledge graph fed
by MusicBrainz and Last.fm data, and differing in whether the diver-
sification step was performed (mg-dwe-diverse) or not(mg-dwe16).
Diversification with Bounded Greedy Selection uses the parameter 𝑏 = 15
while 𝐾 corresponds to the length of the recommendation list. For
example, to give a recommendation of 𝐾 = 10 artists, the top 10× 15 =
150 artists have been considered.

16 Music graph deep walk embedding.
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Fig. 20. Top-𝑘 parameter evaluation.
Fig. 21. Plays weight parameter evaluation.
5.5.1. Evaluating recommender variants
Since the connections between the users and the artists they listened

to make up an important part of the knowledge graph, it could be
possible that these relations are the main contributors to the recom-
mendations. However, this would mean that EARS takes an approach
similar to collaborative filtering, using a knowledge graph instead of a
rating matrix. To gain insight into the extent to which music-specific
domain knowledge contributes to the recommendations, a lfm-dwe17

variant of EARS was additionally evaluated. In this case, EARS uses
a different knowledge graph, which is solely based on Last.fm data,
ignoring all music-specific knowledge from MusicBrainz. This means
that the knowledge graph contains only users and artists that are
connected according to their listening history, resulting in a bipartite
user-artist graph. Apart from the knowledge graph, lfm-dwe works
exactly like the recommender discussed in Section 4. Some preliminary
experiments with the lfm-dwe variant showed that it works well with
the same parameters as described in the previous sections.

Thus, for the final evaluation, the same parameters as shown in
Table 6 were set for mg-dwe, mg-dwe-diverse and lfm-dwe. The
parameter values used for or this set of experiments were derived from
the results of the previous experiments (for the embedder parameters
from Section 5.2, for the top-k parameter from Section 5.3 and for the
w parameter from Section 5.4).

Furthermore, as baseline, a rand-rec approach was implemented,
which recommends artists completely randomly. In other words,
rand-rec has access to the entire pool of artists, but picks recom-
mended artists randomly instead of doing any further calculations.

5.5.2. Evaluation results
In this section, the evaluation results of the different variants of

the EARS system are presented. To get a more accurate picture of the
recommendation quality, we consider 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 and 𝑟𝑒𝑐𝑎𝑙𝑙@𝐾 for
values of 𝐾 = 5, 10, 25. Furthermore, 𝑛𝑜𝑣𝑒𝑙𝑡𝑦 and 𝑣𝑎𝑟𝑖𝑒𝑡𝑦 were evaluated

17 Last.FM deep walk embedding.
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Table 6
Parameter setup for EARS evaluation.
Embedder parameters

Embedding method DeepWalk
Walk length 100
Walk number 100

Recommender parameters

Top-𝐾 per User Artist 75
Plays weight 𝑤 0.5

Evaluation parameters

Number of runs 𝑚 5
Users per run 𝑛 200

for 𝐾 = 10 recommendations. The evaluation results are shown in
Table 7 and Fig. 22.

Let us first take a look at the mg-dwe variant of EARS using both the
MusicBrainz and the Last.fm datasets. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 is between 0.204
and 0.141 depending on 𝐾. Note that 𝑝@10 = 0.176 means, that on
average, 1.76 out of ten given recommendations are relevant to the
user. To understand the meaning of this value, let us look at how it is
determined. The Last.fm dataset contains on average 50 artists in the
listening history 𝐻(𝑢) of each user. This set of artists is split by half
between training and test data. This means that if there are 50 artists
in the listening history, 25 of them belong to the training data that the
recommender knows, and the other 25 belong to the test data that the
recommender does not know. The calculation of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 checks
how many of the 10 recommended artists refer to one of the 25 artists
from the part of the listening history unknown to the recommender.
Considering that a user’s test data consists of only about 25 artists on
average and there are about 20,000 artists in total, hitting almost 2 out
of those 25 artists by selecting 10 artists out of 20,000 is a very good
result. Recall values are between 0.040 at 𝐾 = 5 and 0.116 at 𝐾 = 25 for
mg-dwe. Given that an AUC of 0.5 would represent completely random
recommendations and 1.0 would be the perfect recommender which
recommends only relevant artists (as long as they exist), a final AUC of
0.872 seems rather promising.
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Fig. 22. Evaluation results.
Table 7
Evaluation results.

mg-dwe mg-dwe- lfm-dwe rand-rec
diverse

p@5 0.204 0.202 0.121 0.0014
p@10 0.176 0.177 0.123 0.0013
p@25 0.141 0.142 0.110 0.0012
r@5 0.040 0.040 0.024 0.000
r@10 0.069 0.070 0.049 0.001
r@25 0.116 0.096 0.108 0.001
AUC 0.872 0.876 0.805 0.499
MAP 0.083 0.085 0.057 0.002
novelty@10 1797 1791 2013 2636
diversity@10 0.253 0.289 0.311 0.596

Interestingly, when comparing mg-dwe and mg-swe-diverse,
accuracy does not get worse with diversification. The evaluation results
are very similar. As expected, mg-dwe-diverse increases diver-
sity slightly over mg-dwe as measured by diversity@10. Note
that mg-dwe already has a built-in mechanism for diversifying rec-
ommendations by making recommendations for each of the possible
diverse artists in the listening history. Being able to diversify with-
out actually sacrificing accuracy is an unexpected but welcome result
which suggests that mg-dwe-diverse is preferable when compared
to mg-dwe.

Looking at the curves in Fig. 22, mg-dwe and mg-dwe-diverse
generally behave alike. In terms of precision–recall curve, mg-dwe
seems to have a slightly better precision at very low recall (probably
with 𝐾 at 1 or 2) but drops below mg-dwe-diverse at slightly higher
recall.

Looking at recommendations using only the collaborative data pro-
vided by Last.fm, the results for lfm-dwe show that the recommen-
dation accuracy becomes significantly worse. This is confirmed by
a look at the ROC and precision–recall curves. The curve of lfm-
dwe is significantly lower than the curve of mg-dwe(-diverse).
Recommenders with an underlying knowledge graph constructed with
data from MusicBrainz know and are able to recommend all artists, even
if they do not appear in the user history. This is different for the lfm-
dwe recommender, which only uses collaborative data from Last.fm and
only knows the artists that appear in user histories. This results in lfm-
dwe never reaching a recall of 1. In terms of novelty and diversity,
lfm-dwe performs slightly better than mg-dwe(-diverse). Since
there is a natural trade-off between accuracy and novelty and diversity,
this result was to be expected.

It should be noted, that the better performance of mg-dwe(-
diverse) compared to lfm-dwe does not necessarily implies that
collaborative filtering is generally worse for artist recommendation
than the method proposed by this work. A state-of-the-art collabora-
tive filtering implementation would most likely perform better than
14
lfm-dwe. However, comparing mg-dwe(-diverse) to lfm-dwe
showed that adding domain knowledge to a simple bipartite item–
user graph did improve the recommender systems performance sig-
nificantly. The comparison of the evaluation results of lfm-dwe mg-
dwe(-diverse) prove that EARS is not driven by the collaborative
information in the knowledge graph.

Finally, the rand-rec recommender performs very poorly as ex-
pected. Novelty and diversity values are the best of the evaluated
recommenders, which is also not surprising. Completely random rec-
ommendations naturally lead to more diverse and novel items, as
similarity to artists a user has heard before is not considered at all.

6. Related work

This section provides an overview of different approaches to knowl-
edge-based music recommendation. Particular emphasis is given to
work that proposes music recommendation systems based on graph
embeddings.

One of the first music recommender systems using external context
information is FOAFing the Music (Celma & Serra, 2008). The system
crawls thousands of websites for music-related information and filters
that information to find music that fits a user’s personal profile and
listening habits. The music related information is stored as RDF triples
and includes information regarding music releases, concerts, album
reviews as well as users’ listening histories from Last.fm. User profiles
are represented by Friend Of A Friend (FOAF) profiles, which have
to be created by the users themselves. The general recommendation
approach is to obtain music-related information from a user’s FOAF
profile, identify the artists the user is interested in, and compute
similar artist by exploiting the RDF graph of artists relationships. The
author does not provide details regarding how exactly the similarity is
computed, but it can be assumed that a simple path-based approach is
used to find similar artist in the RDF graph.

Another path-based approach is the dbrec Music Recommendation
System (Passant, 2010) buildt on DBpedia. The authors introduce
Linked Data Semantic Distance (LDSD), which computes the similarity
between two resources in DBpedia based on the direct and indirect
links between them. Then a user is recommended such artists that have
a small LDSD distance to her favorite artists. In addition, information
is taken from DBpedia to provide explanations why two entities are
similar, e.g. that two artists have the same birth place or associated
labels. Explanations are basically formed by listing the facts both artists
share in DBpedia. Although these explanations do not seem partic-
ularly sophisticated, dbrec was probably the first work to show that
knowledge-based recommendation approaches can enable explainable
recommendations.

In Oramas et al. (2017) knowledge graphs are used to recommend
sounds for an online sound sharing platform. The approach extracts se-
mantic features from textual descriptions of sounds, and applies entity
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Table 8
Comparing related work with EARS.

Recommender Music data User data Recommendation approach Diversity Explainability

(Celma 2008) RDF graph created by web
crawler

FOAF profiles Path-based – –

(Passant, 2010) RDF graph from DBpedia – Path-based – Shared
DBpedia facts

(Oramas, 2017) sound
recommender

RDF graph from DBpedia +
WordNet

Downloaded sounds Path-based and collaborative filter – –

(Chen, 2016) playlist
recommender

– KG from user playlists HPE embedding (random walk) – –

(Wang, 2018) temporal
preferences

Music meta data (no KG) User playlists (no KG) Direct embedding of playlists and
music metadata

– –

(Lin, 2018) temporal preferences Collaborative KG (very simple) Collaborative KG ( playlists) Embeddings (TRANS) and neural
networks (HK-ANN)

Addressed –

(Saravanou, 2021) playlist
continuation

Spotify music data Spotify playlist data Aggregator functions to learn
embeddings

– –

EARS artist recommender Collaborative KG from
MusicBrainz

Collaborative KG from Last.fm Arbitrary embedding method Bounded
Greedy
Selection

KG-based
linking techniques to the extracted features using WordNet and DBpe-
dia. Again, the recommendation process uses a path-based approach
to create neighborhood vectors of items. These are combined with
collaborative feature vectors that provide information about which
sounds users have downloaded. This work can be classified as a hybrid
method that combines knowledge graph-based recommendations and
collaborative filtering. While a knowledge graph is used to generate
neighborhood vectors of items, the collaborative information is not
directly contained in the graph, but a feature combination is applied
to consider the collaborative information.

Chen, Tsai et al. (2016) published one of the first works applying
graph embedding techniques to music recommendations. Instead of
recommending individual artists or songs, as in the previously discussed
work, the authors proposed an approach in which music playlists are
recommended as a whole. The underlying knowledge graph contains
only the users and their playlists with the associated songs, but not
other domain-specific information about the music tracks. The authors
use their own embedding method called Heterogenous Preference Em-
bedding (HPE) to embed the graph and make recommendations by
computing the similarity between embeddings using simple distance
measures. Generally speaking, HPE implements a random walk-based
embedding technique to learn graph embeddings. However, this ap-
proach does not use a knowledge graph in the strict sense, since it lacks
specific domain knowledge, but represents a bipartite user–item graph.

Wang et al. (2018) propose a context-aware music recommendation
approach that can recommend music items that match users’ temporal
preferences for music. Unlike the other approaches discussed so far,
they do not create a graph representing music knowledge, but propose
to learn embeddings directly on user histories and music metadata. The
authors assume that musical preferences stay stable within certain time
periods. Based on this assumption, the proposed embedding technique
treats the user’s listening history as a temporal sequence. It considers
songs that appear in a window of a certain size as similar and uses
them to calculate song embeddings. Apart from that, the approach uses
metadata for building feature vectors of songs. User preferences are
represented by averaging embeddings of songs the user has listened to
in the past. Recommended songs have embeddings that are similar to
the embeddings of the user’s preferences.

Lin et al. (2018) propose another approach that focuses on temporal
aspects in music recommendations. Based on a user’s current session,
the system uses knowledge graph embeddings and recurrent neural
networks to provide short-term recommendations for songs. The au-
thors build a collaborative knowledge graph that includes songs, artists,
albums, as well as users with their listening history, but that also lacks
15

other domain-specific information about the music songs. Then they
apply the distance-based embedding method TransR to obtain embed-
dings of songs and users. In addition to these graph embeddings, they
compute embeddings of textual and visual data related to songs and
aggregate the three resulting embeddings in a final one. The authors
propose the heterogeneous knowledge-based attentive neural network (HK-
ANN) that learns song recommendations and takes as input the user’s
embeddings and the embeddings of songs they have recently used.
Their evaluation shows that the proposed system is able to outperform
other short-term music recommendation systems. In addition, more
unpopular songs are recommended compared to other approaches,
indicating that the approach is less prone to popularity bias.

MUSIG is another knowledge graph embedding-based music recom-
mender system that was recently proposed (Saravanou et al., 2021).
MUSIG makes use of the data available in Spotify and considers three
different types of information: organizational information such as co-
occurrences in playlists, content information based on audio files and
expert generated information such as genres. Rather than learning
different embedding vectors for individual entities in the graph, MUSIG
learns aggregator functions that can compute embeddings for a given
node by looking at information in the node’s neighborhood. Then
a multi-task supervision step learns the parameter of the aggregation
functions, which can be used for the following tasks: playlist prediction,
genre prediction and audio similarity prediction. The authors applied
their method to a playlist continuation task. They calculate the aver-
age embedding of songs in a playlist and compute cosine similarities
between this average embedding and the embeddings of songs not in
the playlist. This approach is able to calculate embeddings of new
items very efficiently by just applying the average functions to the
neighborhood of the new item.

Table 8 illustrates the differences between the above mentioned
works and compares them with the EARS system. It indicates that EARS
provides a flexible approach based entirely on embedding knowledge
graphs. The collaborative knowledge graph combines semantically rich
information about artists with collaborative user data. Moreover, EARS
explicitly addresses recommendation diversity and explainability.

7. Conclusion

In this paper we have presented the EARS recommender approach,
which is based on knowledge graph embeddings. The underlying
knowledge graph is built from open data about the music domain using
MusicBrainz and Last.fm. We followed a hybrid approach to derive
a knowledge graph that combines relevant domain knowledge about
music artists and bands with collaborative data about users’ listening
behavior. In addition, EARS puts special emphasis on the diversity of

recommendations and their explainability.
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A comprehensive evaluation with real user data from Last.fm proves
hat EARS delivers very good recommendation results. In particular,
t was shown that the use of knowledge graph embeddings can sig-
ificantly improve the recommendation quality of purely collaborative
pproaches. Furthermore, a comprehensive set of experiments investi-
ated the influence of different hyper parameters of DeepWalk, which

turned out as the embedding method showing the best recommendation
results.

As future avenues we envision building a more sophisticated knowl-
edge graph and evaluating how it affects the recommendations. More-
over, to our knowledge, no openly accessible knowledge graph exists
in the music domain yet.

Regarding the recommender system, it would also be interesting to
study directed or weighted knowledge graphs. For example, relations
between users and artists could be weighted by how often a user has
played the artist in the past. Similarly, weights between labels and
artists could be based on how many times a label has published an
artist’s release.

So far, we have only compared a hybrid knowledge graph of Mu-
sicBrainz and Last.fm data with a knowledge graph of purely collabo-
ative Last.fm data. Of course, it would also be interesting to see how
recommender system that uses only domain-specific knowledge from
usicBrainz and omits collaborative knowledge compares to the hybrid

pproach taken by EARS.
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