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Abstract
Background and Objectives: Drawing causal conclusions from real-world data (RWD) poses methodological challenges and risk of
bias. We aimed to systematically assess the type and impact of potential biases that may occur when analyzing RWD using the case of
progressive ovarian cancer.

Methods: We retrospectively compared overall survival with and without second-line chemotherapy (LOT2) using electronic medical
records. Potential biases were determined using directed acyclic graphs. We followed a stepwise analytic approach ranging from crude anal-
ysis and multivariable-adjusted Cox model up to a full causal analysis using a marginal structural Cox model with replicates emulating a
reference randomized controlled trial (RCT). To assess biases, we compared effect estimates (hazard ratios [HRs]) of each approach to the
HR of the reference trial.

Results: The reference trial showed an HR for second line vs. delayed therapy of 1.01 (95% confidence interval [95% CI]: 0.82e1.25).
The corresponding HRs from the RWD analysis ranged from 0.51 for simple baseline adjustments to 1.41 (95% CI: 1.22e1.64) accounting
for immortal time bias with time-varying covariates. Causal trial emulation yielded an HR of 1.12 (95% CI: 0.96e1.28).

Conclusion: Our study, using ovarian cancer as an example, shows the importance of a thorough causal design and analysis if one is
expecting RWD to emulate clinical trial results. � 2022 The Authors. Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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What is new?

� This conceptual paper using a real-world case
example offers a comprehensive overviewof potential
biases that may occur in real-world data (RWD) anal-
ysis andprovides a summary for causal inference tools
and potential adjustment methods including causal
graphs, target trial emulation, and g-methods.

� This bias assessment demonstrates that self-inflicted
biases can be avoided by using causal frameworks
and that residual (unmeasured) confounding may
contribute much less to bias than often suspected
when using real-world data. Therefore, confidence
in observational studies using appropriate innovative
causal analytic methods e if applied correctly and
completely e may increase. This work also under-
lines the need for carefully carefully designing obser-
vational studies based onRWDand the importance of
the target trial approach, which is now also taken up
by health technology assessment agencies in Europe.

What this adds to what was known?
� We systematically assessed type, direction and

magnitude of potential biases in real-world observa-
tional data analysis by applying a stepwise analytic
approach ranging from simple crude analysis, over
traditional adjustment methods, to full causal ana-
lyseswith target trial emulationandcomparing results
to a reference randomized controlled trial (RCT).

� In addition to traditionally considered baseline con-
founding, immortal time bias, time-dependent con-
founding, and selection bias are driving systematic
errors in the case of ovarian cancer therapy, leading
to over- and underestimation of the true treatment ef-
fect depending on the imperfect adjustment method.

What is the implication and what should change
now?
� It is important to increase the knowledge about

causal analytic frameworks that go beyond simple
regression or propensity score analyses in clinical
research, clinical guideline development and health
technology assessment, to ultimately make sure pa-
tients receive treatments with causally substanti-
ated benefits that outweigh the harms.

1. Introduction

Real-world evidence (RWE) can complement evidence
from randomized controlled trials (RCTs) in order to assess
comparative treatment effectiveness in routine practice under
real-life conditions, where the artificial settings of trials can
be avoided [1,2].
However, comparative effectiveness analysis of real-world
data (RWD) poses methodological challenges [1,3e7]. Tradi-
tional statistical methods attempt to control for time-
independent confounding by matching techniques, stratifica-
tion, weighting, or multivariable-adjusted analyses incorpo-
rating baseline variables. For studies with the potential of
time-dependent confounding, further causal inference ap-
proaches have been developed, applied, and discussed during
the last decades [3e5,8,9]. These approaches involve three
complementary conceptual components: causal diagrams, g-
methods, and the target trial approach [3e5,10e13].

The target trial approach minimizes immortal time bias,
which is a key concern for ‘ever vs. never’ treatment com-
parisons. It can be difficult to understand whether patients
live longer because they receive a particular treatment or
whether patients received that treatment because they lived
longer [3e5,7,14]The target trial approach is a structural
approach emulating an RCT by following its structure,
defining a time zero representing the time of inclusion,
randomization, and treatment allocation time. This struc-
tural approach attempts to avoid immortal time biases and
is very useful for comparing multiple dynamic treatment
strategies [5,15,16].

An example of a dynamic research question is how to opti-
mize treatment management in women with ovarian cancer.
While first-line therapy is well defined as the surgery fol-
lowed by platinum-based chemotherapy [17], second-line
chemotherapy (LOT2) in women with progressive ovarian
cancer is less well-defined. It is not only debated whether
or not LOT2 should be provided but also when would be
the best time to provide LOT2. Potential starting points
may be (in timely order), at the time of progression, defined
by increasing biomarker (i.e., cancer-antigen 125 [CA-
125]), when a computerized tomography (CT) scan shows tu-
mor growth, when symptoms occur, or never. Besides the dy-
namic treatment component, the case of assessing when to
start LOT2 in women with progressive ovarian cancer using
observational data bears all the problems of RWD such as un-
measured, time-independent, and time-dependent confound-
ing, immortal time bias, and selection bias. This case was
therefore chosen to demonstrate potential biases when infer-
ring causal treatment effects from RWD.

The aim of this study was to systematically assess and
demonstrate the type and impact of potential biases that
may occur when deriving causal conclusions from large
real-world database analyses using different methodolog-
ical approaches. As a case example, we used a retrospective
observational dataset linking electronic health records, hos-
pital data, and claims data from patients treated for ovarian
cancer in practices throughout the United States.
2. Methods

To estimate the impact of potential biases when
analyzing RWD, we created and followed a causal



Fig. 1. Causal diagram including measured and unmeasured confounding. Ca-125: Cancer-Antigen 125; LOT1: first line chemotherapy; LOT2:
second-line chemotherapy; CT: computed tomography; tx: treatment.
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analytic framework prior to the data analysis. We 1) used
the case of ovarian cancer, 2) identified potential biases
using a causal graph (Fig. 1), 3) judged the direction of
potential biases based on expert assumptions encoded in
the causal graph following the techniques described by
VanderWeele et al. [8] (Table 1), 4) selected a published
RCT [18] as reference case (‘‘gold standard’’), 5) defined
analytic approaches from crude statistical associations
and traditional techniques adjusting for time-
independent (baseline) confounding to more sophisticated
causal inference methods adjusting for time-dependent
confounding, and 6) emulated a target trial based on the
study population of the reference case RCT to appropri-
ately compare results from the observational data analysis
to the RCT results. For details on steps 2 and 3 see
eAppendix A.1.

The causal diagram is a simplified version of a directed
acyclic graph (DAG) with time-varying variables. It shows
the correlation of interest, being the effect of LOT2 on
Table 1. Expert panel assessment of assumed bias direction

Bias HR - in f

Confounding

Unmeasured(disease severity, CT scan, symptoms)

(Education)

Time-independent(ascites, stage)

(Age, comorbidities, time since LOT1)

Time-dependent(CA-125)

Immortal-time Bias

Selection Bias/Confounding by indication

Abbreviations: HR, Hazard Ratio; HR -, underestimation of HR; HR 6, e
computer tomography; LOT1, first line treatment.
survival and variables that directly or indirectly correlate
with both variables. White boxes indicate variables that
are available in the dataset; variables indicated by checked
boxes contain a substantial fraction of missing or not
adequately measured variables; striped boxes indicate vari-
ables that are not present in the database.
2.1. Description of the case example and definition of
the research question

To estimate the presence, direction, and magnitude of
potential biases when analyzing RWD, we chose a dy-
namic treatment question: Does (LOT2) improve overall
survival in patients with ovarian cancer who progressed
after the initial successful surgery and first-line chemo-
therapy (LOT1). We expected to see time-independent,
time-dependent confounding, selection bias, and
immortal time bias. Furthermore, a published RCT
Direction of bias (pro or contra LOT2) estimation of HR

avor of LOT2 HR ± either HR D against LOT2

X

X

X

X

X

X

X

ither under- or overestimation of HR; HR þ, overestimation of HR; CT,



Fig. 2. Analytic strategies. Time-dep: time-dependent; Unmeas: unmeasured; Imm Time: immortal-time; LOT2: second-line therapy; Wks: weeks;
time-var.: time-varying; IPCW: inverse probability of censoring weighting; ITT: intention to treat; PP: per protocol.
Strategies:
1. ‘‘Crude Cox’’: Univariable Cox regression without adjustment for covariates, comparing the overall survival of patients receiving LOT2 at any time
after progression to the overall survival of those never receiving LOT2.
2. ‘‘Adjusted Cox’’: Cox regression with adjustment for baseline confounding covariates, comparing the overall survival of patients receiving LOT2
at any time after progression to the overall survival of those never receiving LOT2.
3. ‘‘Crude time-var. Cox’’: Cox regression including treatment as time-varying covariate to compare (treated vs. nontreated) person time rather than
(ever treated vs. never treated) individuals.
4. ‘‘Adjusted time-var. Cox’’: Cox regression including treatment as time-varying covariate and additionally adjusted for baseline confounding to
compare (treated vs. nontreated) person time rather than (ever treated vs. never treated) individuals.
5. ‘‘Target trial PP’’: Replication of all patients to mimic a ‘‘counterfactual’’ clinical trial assigning each patient to each treatment arm and perform-
ing a per protocol analysis where individuals are being censored at the time of treatment violation.
6. ‘‘Target trial causal PP’’ (inverse probability of censoring weighting [IPCW]): Performing a target trial as described but accounting for informative
censoring by applying the IPCW.
7. ‘‘Partially emulated trial’’ (only strategies): Applying the target trial approach and adapting the protocol regarding treatment strategies only to the
one of the gold-standard RCT described by Rustin et al., that is, comparing ‘‘immediate treatment’’ to ‘‘delayed treatment’’.
8. ‘‘Fully emulated trial’’ (strategies, population): Emulating the gold-standard RCT by using the same treatment strategies as in the gold-standard
RCT and additionally standardizing the study population to the study population of the gold-standard RCT.
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investigated the same research question and served as
reference case.

For this analysis, observational study cases were
selected from a cohort of more than 12,000 patients with
ovarian cancer with information collected from electronic
medical record of primarily medium and large
community-based oncology practices in the United States
from January 2000 to June 2014 (see eAppendix A.1.).

We included female patients aged 18 years or older with
ovarian, fallopian tube, or primary peritoneal cancer. Eligible
patients must have disease progression after standard LOT1
treatement. Progression was defined as the doubling value
of CA-125 (details see eAppendix A.1.) [19].

Some variables such as the biomarker CA-125 are just
sporadically measured. For example, the biomarker CA-
125 is not routinely measured at each clinical visit. Hence,
it is not possible to determine whether the biomarker is
missing or not measured. We assumed parameters were
measured as indicated by the data. The last measurement
therefore reflecting the knowledge of the physician.
2.2. Selection of reference case/gold standard

We selected a reference (gold standard) study by Rustin
et al [18] to compare our effect estimates. The RCTestimated
the benefit of early LOT2 in women with ovarian cancer and
included women with ovarian cancer who had undergone sur-
gery and LOT1. Women were randomized to early treatment
(LOT2within 28 days after progression that was purely based
on increased CA-125 concentrations, that is, twice the upper
limit of normal) or delayed treatment (delaying treatment
and only commencing treatment at clinical or symptomatic
relapse). Survival was compared between arms. They could
not find evidence for a difference in overall survival between
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early and delayed treatment adjusted for stratification and
prognostic factors (HR 1.01, 95% CI: 0.82e1.25) [18].
2.3. Definition of analytic approaches from crude to
causal

To identify the impact of different biases that may occur
when estimating causal effects of LOT2 on overall survival
using RWD, we followed a stepwise analytic approach (an-
alyses 1e6), which is described in the following para-
graphs. The approach ranges from crude analysis and
traditional multivariate adjustments up to a full causal anal-
ysis. A crude (i.e., purely statistical association) vs. causal
analysis is not only depicted by the statistical method but
also by the precision of the research question and treatment
allocation. The analytic strategies and the corresponding
treatment allocations are illustrated in Figure 2 and
described below. All statistical analyses were performed
with SAS software version 9.4 (SAS Institute Inc).

Figure 2 shows the analytic strategies and their corre-
sponding intervention and comparator to assess the type
and impact of potential biases. The strategies built upon
each other and increase in complexity when going from
crude to a full causal analysis. The target trial follows a
counterfactual approach asking for specific definition of
treatment and a per protocol analysis. To allow for a com-
parison to our reference case, we adapted the full causal
approach (analysis 6 ‘‘target trial’’) to emulate the refer-
ence trial by adapting the protocol as well as the trial
cohort.

Typical biases occurring when analyzing real-world data
are listed, and the ‘‘X’’ indicates whether the given strategy
is controlling for that bias.

We started with a simple research question and simple
treatment group allocation by comparing the crude (i.e., un-
adjusted) survival of progressed patients who had received
LOT2 anytime during follow-up with the survival of those
with progressive disease who had not received LOT2 at
any time during follow-up, from here on called, ‘‘ever vs.
never’’ comparison. In analysis 1, we applied a simple uni-
variable Cox regression for overall survival without adjust-
ment for covariates (‘‘Crude Cox’’). In analysis 2
(‘‘adjusted Cox’’), we controlled for baseline confounders
(i.e., age, nadir, CA-125 at the time of progression, and time
since first-line treatment) by including them as covariates
into the Cox model. If the assumption of proportional haz-
ards was violated, an interaction between treatment and time
was included to model a time-dependent treatment effect.

To account for immortal time bias, which may occur in
the ‘‘ever vs. never’’ treatment comparison, we compared
(treated vs. non-treated) person time rather than (ever
treated vs. never treated) individuals. Each patient contrib-
uted his/her person time to the treatment he/she received to
the corresponding time point, from here on called, ‘‘treated
vs. untreated person time’’ comparison [20e22]. In anal-
ysis 3, (‘‘Crude time-var. Cox’’), we included treatment
as time-varying covariate in the crude Cox model in order
to eliminate the immortal-time bias. In analysis 4,
(‘‘Adjusted time-var. Cox’’), we additionally adjusted for
baseline confounding using the same covariates as in anal-
ysis 2. Additionally, to treatment, CA-125 value was
included as time-varying covariate as it changed over time.

For the more complex causal analyses, we followed the
target trial approach, structuring any data analysis as if one
would design a RCT as described by Hernan, Robins, Cain,
and others [3,15,23e26]. We started with a well-defined
research question assessing the causal effect of LOT2 on sur-
vival when provided to women with ovarian cancer immedi-
ately after progression vs. never LOT2. To account for natural
time variation within RWD, we allowed for a lag time of
6 weeks (‘‘grace period’’) after the diagnosis of progression.
We refer to these adapted strategies as ‘‘immediate vs. never’’
treatment. In analysis 5, (‘‘target trial: PP’’), we followed the
target trial approach [3,5,16,27,28], which estimated the per
protocol effect. We replicated all patients in order to mimic
a ‘‘counterfactual’’ clinical trial, assigning each patient to
each treatment arm and censored them at the time of treat-
ment violation. In analysis 6, (‘‘target trial: causal PP’’), we
considered the fact that artificial censoring is potentially infor-
mative. Hence, we applied a marginal structural Cox model
adjusting for informative censoring by IPCW [4,11,28e31].
IPCW aims at correcting for informative censoring by
applying a two-step approach. First, a weight model estimates
the probability of not being censored. Second, the inverse of
the estimated probability is used as weight in the outcome
model. This weighting procedure creates an unconfounded
‘‘pseudo-population’’ [32]. In sensitivity analyses, we as-
sessed the robustness of results of the outcome model using
different weight models [33e35] (Table 3).
2.4. Trial emulation using the reference case as gold
standard

To be able to compare the estimated effect measures of
the observational data to the gold standard, we followed the
recommendations of Lodi et al. to harmonize the study pro-
tocols and study population [36,37] (analyses 7e8). In
analysis 7, (‘‘partially emulated trial’’ (only strategies)),
we adapted the target trial protocol (only) to the treatment
strategies of the protocol of the gold-standard RCT
described by Rustin et al. We introduced a new strategy
labeled ‘‘delayed treatment’’, as used in the Rustin et al.
trial, and compared this strategy to ‘‘immediate treatment’’
[18]. The RCT protocol for the ‘‘delayed treatment’’ arm
dictated the start of LOT2 purely based on abnormalities
on the CT scan or symptoms and not on progression based
on CA-125 increase. In the absence of information on CT
scans or symptoms in the observational data and any initi-
ation of LOT2, all treatment not based on biomarker in-
crease (i.e., 6 weeks after progression defined by
biomarker increase) were considered delayed treatment.
Hence, patients in the ‘‘delayed treatment’’ arm were



Fig. 3. Flowchart of the included cohort. Time-var.: time-varying; IPCW: inverse probability of censoring weighting; ITT: intention to treat; PP: per
protocol; HR: hazard ratio; 95% CI: 95% confidence interval.
LOT2: second-line chemotherapy.
This flowchart shows the included patients. 3,688 of patients in the database showed a diagnosis of peritoneal cancer. Those not meeting the full
inclusion criteria were excluded. Most excluded patients were not successfully receiving LOT1. All included patient data were replicated and allo-
cated to each treatment arm. The chart shows the number of deaths, censoring due to protocol violation, and those who lost to follow-up.
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artificially censored only during the first 6 weeks after pro-
gression if they started treatment.

In analysis 8, (‘‘fully emulated trial’’ [strategies, popula-
tion]), we emulated the gold-standard RCT by not only us-
ing the treatment strategies as defined in the Rustin et al.
trial, but also by standardizing our study population to
the study population of the RCT. In other words, we used
proportional weights in our analysis to create a similar
baseline cohort as the cohort of the gold-standard RCTwith
regard to the baseline distributions of age distribution, first-
line treatment, and progression-free survival.

In sensitivity analyses, we tested the robustness of the
treatment effect estimate by changing assumptions around
time functions, duration of follow-up, population age, grace
period, definition of delayed treatment, and weight models.

2.5. Bias estimation

We estimated the size of the bias in each analytic strat-
egy by comparing the estimated HR to the HR from the
reference case. We did that visually and calculated the pro-
portional difference of the treatment effect. The effect of
potential unmeasured confounding bias was assessed using
the techniques described by VanderWeele et al. [8] (see
eAppendix A.2.2.).
3. Results

3.1. Descriptive results of the ovarian cancer data

Out of a total of 3,688 patients meeting the inclusion
criteria, 1,582 remained in our observational cohort study
after applying the exclusion criteria (Figure 3). The mean
age was 67 years with a standard deviation of 11 years.
3.2. Effect estimates of analytic approaches from simple
to complex and comparison to reference case

Comparing the groups of women who never received
LOT2 to women who did receive LOT2 at any time in
the database (analysis 1) provided us with an estimated
crude HR of 0.56 (95% CI: 0.49e0.64) assuming a constant
HR. When adjusting for baseline confounding (analysis 2),
the HR was 0.51 (95% CI: 0.44e0.59). Adjusting for
immortal time bias by including time-varying covariates
into the Cox model yielded estimated crude (analysis 3)
and adjusted (analysis 4) HRs of 1.41 (95% CI:
1.22e1.64) and 1.37 (95% CI: 1.18e1.59), respectively.
Applying the target trial concept and adapting the
compared strategies, provided an HR of 1.35 (95% CI:
1.17e1.55), when not accounting for informative censoring
(analysis 5) and of 1.38 (95% CI: 1.22e1.63) when ac-
counting for informative censoring by applying IPCW
(analysis 6). Results for all these analyses visualizing the
directions and magnitudes of different biases are shown
in Figure 4 and in Table 2.

Figure 4 shows the HR and its 95% confidence interval
for each analytic strategy and puts it into comparison to the
HR of the reference case indicated by the dotted line and
the gray area indicating the 95% CI. A HR of 1 suggests
no treatment effect; a HR below 1 suggests a beneficial
treatment effect, while a hazard ratio above 1 indicates a
harmful treatment effect.
3.3. Trial emulation using the reference case as gold
standard

Partially emulating the trial by adapting the compared
strategies to the reference case and comparing immediate



Fig. 4. Base-case results.
Treatment allocation:
1. Ever vs. never: Comparing the survival of progressed patients who had received LOT2 anytime during follow-up to the survival of those who had
not received LOT2 at any time during follow-up.
2. Immediate vs. never: Comparing the survival of progressed patients who had received LOT2 within 6 weeks after progression to the survival of
those who had not received LOT2 at any time during follow-up.
3. Immediate vs. delayed: Comparing the survival of progressed patients who had received LOT2 within 6 weeks after progression to the survival of
those who had received LOT2 later than 6 weeks after progression or never.
Analytic strategies:
4. ‘‘Crude Cox’’: Univariable Cox regression without adjustment for covariates.*
5. ‘‘Adjusted Cox’’: Cox regression with adjustment for baseline confounding covariates.*
6. ‘‘Crude time-var. Cox’’: Univariable Cox regression including treatment as time-varying covariate to compare (treated vs. non-treated) person
time rather than (ever treated vs. never treated) individuals.
7. ‘‘Adjusted time-var. Cox’’: Cox regression including treatment as time-varying covariate and additionally adjusted for baseline confounding to
compare (treated vs. nontreated) person time rather than (ever treated vs. never treated) individuals.
8. ‘‘Target trial PP’’: Replication of all patients to mimic a ‘‘counterfactual’’ clinical trial assigning each patient to each treatment arm and perform-
ing a per protocol analysis where individuals are being censored at the time of treatment violation.
9. ‘‘Target trial causal PP’’ (IPCW): Performing a target trial as described but accounting for informative censoring by applying the IPCW.
10. ‘‘Partially emulated trial’’ (only strategies): Applying the target trial approach and adapting the protocol regarding treatment strategies only to
the one of the gold-standard RCT described by Rustin et al., that is, comparing ‘‘immediate treatment’’ to ‘‘delayed treatment’’.
11. ‘‘Fully emulated trial’’ (strategies, population): Emulating the gold-standard RCT by using the same treatment strategies as in the gold-standard
RCT and additionally standardizing the study population to the study population of the gold-standard RCT.
*In analytic strategies 1 and 2, the proportional hazards assumption was violated. In these cases, in addition to the ‘‘average’’ HR, the initial HR of
a model with interaction between linear time and treatment is reported.
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LOT2 to delayed LOT2 (analysis 7), the estimated HR was
1.26 (95% CI: 1.15e1.37). The HR was 1.12 (95% CI:
0.96e1.28) when fully emulating the trial by adjusting
the trial cohort from the observational study to trial cohort
of the RCT as described by Rustin et al. (analysis 8).

3.4. Sensitivity analyses

To test the robustness of our results, we conducted
several sensitivity analyses (see Table 3). We changed the
time horizon from the base case (tailored) to 5 years, and
7 years, used different assumptions when modeling time
(base case as spline to linear time), looked at patients older
than 65 years, changed the grace period from 6 weeks to
4 weeks, defined delayed treatment not only by a treatment
start later than 6 weeks after progression but also by a min-
imum biomarker of 3 times the nadir, and applied a weight
function modeling time as linear function. All those
changes changed the point estimate by less than 5%.
4. Discussion

We used the case of LOT2 in women with ovarian can-
cer to investigate the potential biases that may occur when
using observational RWD for comparative effectiveness



Table 2. Base case results with bias estimation

Estimation method HR 95% Conf. Int. Bias

Ever vs. Never

1. ‘‘Crude Cox’’

Without interaction of time and LOT2 0.56 0.49-0.64 45%

With interaction of time and LOT2a 0.27 0.22-0.34 73%

2. ‘‘Adjusted Cox’’

Without interaction of time and LOT2 0.51 0.44-0.59 50%

With interaction of time and LOT2a 0.25 0.21-0.31 75%

‘‘Treated vs. Untreated Person Time’’

3. ‘‘Crude time-var. Cox’’ 1.41 1.22-1.64 �40%

4. ‘‘Adjusted time-var. Cox’’ 1.37 1.18-1.59 �36%

Immediate vs. Never

Target trial approach

5. ‘‘Target trial PP’’ 1.35 1.17-1.55 �33%

6. ‘‘Target trial causal PP’’ (IPCW) 1.38 1.22-1.63 �36%

Immediate vs. Delayed

Trial emulation

7. ‘‘Partially emulated trial’’ (IPCW) 1.26 1.15-1.37 �25%

8. ‘‘Fully emulated trial’’ (IPCW) 1.12 0.96-1.28 �10%

Abbreviations: HR, hazard ratio; 95% Conf. Int., 95% confidence interval; LOT2, second-line therapy; Time-var., time-varying; vs., versus; PP,
per protocol; IPCW, inverse probability of censoring weighting; Partially Emulated, partially emulating the Rustin trial by emulating the treatment
strategies as described by Rustin et al.; Fully Emulated, fully emulating the Rustin trial by emulating the trial cohort described by Rustin et al. in
addition to emulating the treatment strategies.

Bias is estimated as proportional difference to the reference case point estimate [18], where a positive number indicates bias in favor of the
treatment and a negative number indicates bias against the treatment.

a In analytic strategies 1 and 2, the proportional hazards assumption was violated. In these cases, in addition to the ‘‘average’’ HR, the initial
HR of a model with interaction between linear time and treatment is reported.
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research. At times when RWD are widely available, it is
extensively debated how such data can be used for assess-
ing comparative effectiveness outside of the artificial
setting of RCTs [38e41]. To assess potential biases that
may occur in RWD analysis, we conducted several analyses
assessing the effect of LOT2 on survival. We started with
crude, purely associative analyses and added more and
more complexity to result in a full causal assessment. We
learned that RWD have potential for several biases that
may go in different directions. In the presented case-
example, immortal time bias plays a major role, typically
biasing results in favor of treatment. However, time-
independent, time-dependent, and unmeasured confounding
may bias the results in different directions (see eAppendix
C). We can confirm that the estimated treatment effect most
closely matched the RCT treatment effect when applying
all causal features and emulating the trial by matching
the trial design as well as the trial study population.

We started with a crude Cox regression model comparing
treated patients with those that never received second-line
therapy and found that women receiving LOT2 after progres-
sion had a longer life expectancy than those who did not
receive LOT2. These results are purely associative. Causal in-
terpretations as well as transferring the results to other situa-
tions and populations need to be handled with caution. During
our analyses, we changed the compared strategies to contrast
the simple approaches including ill-defined (but still
frequently used) comparisons with the causal target trial
approach and the trial emulation reflecting the increasing
complexity of the analyses (details see eAppendix D).

The potential for biases such as immortal time bias in
observational data is known and several studies exist that
provide insight in techniques to correct for them
[3,5,7,16,24,25,29]. Those techniques include visual, struc-
tural, and statistical approaches, which are validated in
several study designs and therapeutic areas
[3,5,8,12,15,23e26,29e31,34,35,42e58]. Also, studies
exist applying and comparing several analytic strategies
to observational data to assess potential biases [59e62].
One study compared results for patients eligible for a trial
to those not eligible for that trial [63]. In our study, we
emulated a trial with IPCW and compared it to results of
other analytical methods. We compared analytic strategies
with increasing complexity, applying visual, structural,
and analytical causal methods, and comparing it to the re-
sults of an RCT by emulating that trial. By the estimation
of bias direction, combination of methods, and the
increasing complexity, we offer a novel approach for under-
standing each type of bias and each methodological
approach. Being able to closely reproduce the findings of



Table 3. Sensitivity analyses

Sensitivity analyses
% Change in effect

estimate (HR)

Study time horizon

5 years 4.9%

3 years 1.8%

Modeling time as linear covariate 1.3%

Study population only O65 years 1.4%

Grace period modeled as 4 weeks 2.1%

Delayed tx defined as minimum 3 times
nadir and O6 weeks after progression

0.3%

Weight function with linear time 0.1%

Abbreviations: HR, hazard ratio; tx, treatment.
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our reference RCTwhen thoroughly justifying and applying
causal methods provided us with trust in such methods.

Our study has several limitations. First, our data have
limitations typical for RWD. Some variables necessary
for an unbiased causal analysis according to our DAG were
not available (e.g., imaging, symptoms). Our assessment of
the direction of bias due to unmeasured confounders based
on our DAG indicated a bias overestimating the HR. This is
confirmed by the comparison of our causal analysis results
to the findings of the Rustin trial, which reported a slightly
lower HR. Some other variables available in our dataset are
just sporadically measured; for example, the biomarker
CA-125 is not routinely measured at each clinical visit.
In this case, we assumed the last measurement available re-
flects the knowledge of the physician.

Second, we used progression as indicated by the marker
CA-125 as the decision criterion. However, the time between
progression as defined by the biomarker and clinical onset
may vary widely [64]. In our dataset, we did not have any in-
formation on progression indicated by CT scans or symptoms.
Hence, not receiving any LOT2 in our study may reflect either
no treatment despite progression or no treatment because of
absence of clinical symptoms. Clinically, the comparative ef-
fect estimates of analyses 1e6 should therefore be interpreted
with caution but likely this issue does not affect the overall
qualitative picture of bias assessment.

Third, we did not consider any genetic proxies such as
family history as potential confounders. Such prognostic
factors may introduce potential confounding, for example,
because they may influence either physicians’ prescription
or patient awareness and preference for starting LOT2.

Fourth, we call analysis 6 a causal per protocol analysis
despite residual unmeasured confounding. Using the DAG,
showed that all residual confounding is likely to overesti-
mate the estimated HR comparing treated women to not
treated women.

Fifth, our study population reflects patients in medium/
large oncological practices, and therefore, may not be
generalizable to all patients.

Sixth, the delayed treatment strategy is likely a more
relevant comparative strategy than the never treatment
strategy. However, it is not fully compliant with a well-
defined target trial approach as it does not define the treat-
ment strategy explicitly. We would have liked to include
concrete strategies of starting LOT2 based on clinical onset
of progression. However, Rustin et al. show that even an
RCT may not define a treatment strategy explicitly. He
defined the delayed LOT2 strategy more broadly which is
matched by our approach more closely [18].

Seventh, it must be noted that comparing conditional
with marginal HRs is comparing apples with oranges, as
HRs are not collapsible [65,66]. We therefore used the con-
ditional results of the Rustin trial as a reference to be
compared with the results of our conditional analyses.

Eighth, we did not apply alternative g-methods, such as
the parametric g-formula [29,67] or g-estimation, with
structural nested models [10,29,68,69]. However, the g-for-
mula fits best if there are natural intervals (e.g., visits)
[67,70]. For example, the first application of the parametric
g-formula was performed in 2002 in the Framingham
Offspring Study with scheduled 4- and 8-year intervals
[71] which is not the case in our study. Another causal
inference approach, g-estimation using structural nested
models, relies on the assumption of a common treatment ef-
fect across all patients, which is unlikely to be true in
second-line ovarian cancer chemotherapy, where some
women may benefit and others may not.

Lastly, we used the Rustin trial as the reference case and
emulated the trial by mapping the structure and study pop-
ulation (e.g., inclusion criteria) of the Rustin trial. However,
some differences to the Rustin trial persist. Patients in the
Rustin trial were closely monitored after the LOT1 (every
3 months), which may have led to an earlier detection of
disease progression than in the cohort of our analysis. Also,
the allowed time to start therapy after detection of progres-
sion was shorter in the Rustin trial (28 days) than in our
study (42 days). However, we felt that our assumption
was reasonable for an observational study as the physician
did not have the information of the grace period prior to
their treatment decision. Additionally, our clinical experts
supported the application of a 42-day period as it is consid-
ered realistic in the real-world setting. A sensitivity analysis
changing the grace period to 28 days showed robust results.
For more details on differences, see eAppendix B3. We
were able to identify and quantify several biases that may
occur when analyzing observational data using an RCT as
the comparative gold standard. Further, we assessed the
comparative effectiveness of LOT2 in women with progres-
sive ovarian cancer when applying complex causal methods
combining visual, structural, and statistical approaches.
However, a comprehensive assessment of any treatment
should explicitly consider the real-world setting and patient
values. This means that the final results should represent the
real-world population rather than the artificial trial popula-
tion. In addition, any patient-shared decision making on
whether or not LOT2 should be provided must involve
the entire spectrum of benefits and harms related to
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chemotherapy and cancer, such as anxiety, side effects,
symptoms, effectiveness, comorbidities, time on treatment,
time of treatment, etc. Also, the personal and economic
value of all those components needs to be considered when
deciding on the provision of chemotherapy. An appropriate
method for the synthesis of such evidence is decision-
analytic modeling, which requires causal input parameters
and follows a counterfactual approach predicting and syn-
thesizing the outcomes in a world with and without the
intervention [72].

In the time of digitalization of health care data and
‘‘big’’ RWD, further educational efforts on structural and
statistical methods aiming for causal inference from
RWD to inform health care decision-making should be
expanded to a broader audience, including those who plan
the data collection. Current frameworks and recommenda-
tions on planning, conducting, reporting, and assessing
observational studies [1,73e75] should add additional
emphasis on the risk of typical biases, such as immortal
time bias and time-dependent confounding and their adjust-
ment methods. An increased knowledge on potentials and
limits of RWE can serve as basis for evidence synthesis
and decision analysis in medicine and public health.
5. Conclusion

We used the case example of LOT2 in women with pro-
gressive ovarian cancer to identify potential biases that
may occur when applying different noncausal and causal
analytic approaches to real-word data. We identified
several biases resulting in considerable variation of the ef-
fect measure in different directions, with immortal time
bias leading to larger biases than confounding. When
emulating the reference randomized target trial, we were
able to replicate the effect estimates of the RCT very well.
Studies such as ours are important to demonstrate the need
for causal analyses, to increase the trust and confidence in
RWE, and to help in collecting appropriate data and se-
lecting appropriate analysis methods. Although RWE
should not substitute well-conducted clinical trials due to
the substantial potential for bias in RWE, we do believe
that RWE based on appropriate methods is a valuable
addition to clinical trials.
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