
Handling Matrix Calculations with Microservices within Scenarios of Modern Mobility

Malte Zuch, Andreas Hausotter, Arne Koschel
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Malte.Zuch@hs-hannover.de

Abstract—In the context of modern mobility, topics such as
smart-cities, Car2Car-Communication, extensive vehicle sensor-
data, e-mobility and charging point management systems have
to be considered. These topics of modern mobility often have in
common that they are characterized by complex and extensive
data situations. Vehicle position data, sensor data or vehicle com-
munication data must be preprocessed, aggregated and analyzed.
In many cases, the data is interdependent. For example, the
vehicle position data of electric vehicles and surrounding charging
points have a dependence on one another and characterize
a competition situation between the vehicles. In the case of
Car2Car-Communication, the positions of the vehicles must also
be viewed in relation to each other. The data are dependent
on each other and will influence the ability to establish a
communication. This dependency can provoke very complex and
large data situations, which can no longer be treated efficiently.
With this work, a model is presented in order to be able to map
such typical data situations with a strong dependency of the data
among each other. Microservices can help reduce complexity.

Keywords–e-mobility; microservices; matrix calulations; work-
load decomposition

I. INTRODUCTION

In the context of modern mobility, there are often m to n
assignments. In the field of e-mobility, m-vehicles are often
considered in relation to n-charging points. Or for the real-time
parking optimization, m-vehicles have to be optimized in rela-
tion to n-parking lots. Particularly in Car2Car-Communication,
large swarms of vehicles have to be considered, in order to be
able to identify all possible interaction points.

The basic data model is expressed in m-x-n or m-x-m
matrices. The data are thus represented as normal adjacency
matrices. These matrices can provoke large and complex
data situations. By matrix multiplication of such matrices,
additional data can be calculated which can be used in the
area of Car2Car-Communication. This is the motivation of this
work and will be explained in more detail below.

A. Motivation
For the analysis and optimization of scenarios of Car2Car-

Communication, it is necessary to capture the whole data
situation at first. It must be determined which vehicles have
a favorable distance to other vehicles, in order to establish a
communication bridge to each other.

For example, in Fig. 1 the distance from vehicle A to C
may be too large to communicate with each other (Situation 2).
However, communication from A through B to C could be
enabled via a vehicle B close enough to vehicle A and C
(Situation 1). In order to identify such a possible communi-
cation jump (and also ’deeper’ jumps over several vehicles
in between), large matrix multiplications are required, which

Figure 1. Situations of Car2Car-Communication

can demand a lot of memory and cpu time. The next Section
explains what this work will contribute concerning this topic.

B. Contribution
The focus of this work is to deal with such large and

deep matrix multiplications, which are often necessary within
modern mobility scenarios and during the preparation of
required data. These deep matrix multiplications can provoke
a large demand for memory and cpu time and can exceed
gives system capacities. Therefore, it is to be investigated how
this large matrix multiplication problem can be treated more
efficiently for applying of fine granular architecture concepts
such as microservices. In this work, only the basic concept is
presented, how calculation tasks of Car2Car scenarios can be
decomposed. In the future, this decomposition could easily be
implemented with microservices. In this work the mathemati-
cal model is explained and the microservices are only proto-
typically implemented in MATLAB [1] to illustrate the basic
concept. For real applications, better runtime environments
should be chosen. MATLAB was chosen only because it allows
a very efficient matrix modeling. At first, the related work on
this subject is shown in the Section II. In Section III the general
data concept is presented and how this could be treated by the
use of microservices. Further on, Section IV shows a number
of exemplary measurements and how the computation resource
demands can be reduced with this concept. The final Section V
will summarize the results obtained and give an outlook on
future work. But firstly, the next Section presents the related
work on this topic.

II. PRIOR AND RELATED WORK

A general concept for a coordination system for optimizing
the charging decision of electric vehicles were given in [2]. It
was noted that concepts with parallel data processing would

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

be necessary in the future in order to reactively cope with the
coordination requirements of one million electric vehicles in
Germany. In this respect, matrix models can be helpful in order
to be able to partition the resulting data volumes. This was
show in a prior work [3]. On the basis of these matrix models,
optimization methods can help to assist electric vehicles in
the search for electric charging stations. In an other previous
work, first simulation results could show that vehicles can be
supported theoretically and mutual blockages on load columns
can be reduced. First synthetic simulation results show that up
to plus 59 % more vehicles could be coordinated to electric
charging stations [4].

A detailed overview concerning related matrix computation
is given in [5]. A more detailed explanation of parallel matrix
computation of thinly populated sparse-matrixes is given in this
[6] related work. These sparse matrices could be used to reduce
the volume of data. However, this is not part of this work. Here,
the decomposition concept for the application of microservices
will be presented. But these sparse matrix representations
could help to understand modern matrix models and how
they could be parallelized with regard to microservices. A
general survey to microservices is presented in [7] and gives
an overview of modern companies like Uber, Netflix, Amazon
and Twitter using microservices.

The transition from monolithic application to modern
microservices is shown in [8][9]. Both works give a good
overview on the scaling of micro-services. This could be used
in order to solve also large data problems, which among other
things in the matrix models of this work are considered.

A recent survey of more than 100 IT companies has shown
that only 20 % of companies are not considering microservices
in their company decisions. For 80 % of the companies
surveyed, microservices are already integrated or are currently
in the integration process [10]. A similar survey confirms these
findings, with 23.9 % of companies not yet in contact with
microservices and the majority with 76.1 % are already in use
of practicing or implementing microservices [11].

After this overview of the prior and related work, the
general adjacency matrix model will be explained in the
following Section.

III. THE CONCEPT FOR HANDLING HUGE MATRICES

This section deals with the core content. This is divided
into two Sections. In Section III-A, fundamental matrix mul-
tiplications are addressed and how they are needed in modern
mobility scenarios in order to be able to calculate dependencies
and grouping dynamics of vehicle fleets. After the general
calculation problem has been explained, Section III-B shows
how this problem can be partitioned.

Large matrix multiplication often requires a lot of com-
puting power. A linear increase in the number of columns
and rows often results in a quadratic increase in the elements
that must be calculated. Therefore, it makes sense to solve
the problem from a certain problem size in sub-problems.
These sub-problems can be solved, for example, with the
concept of microservices. The general problem of those matrix
multiplication in modern mobility scenarios is described in the
following Section.

A. The definition of the general calculation problem
In many modern mobility scenarios, it is necessary to

determine which vehicles have a small distance from each
other and can form a local group. This is required, for example,
in intelligent parking management system.

The larger the amount of vehicles in the same area, the
harder the situation of competitive in finding free parking
lots. Matrix multiplications of the adjacency matrix which
contains the vehicle distances can be used to calculate where
particularly strong competition situations occur. Car2Car-
Communication especially is a even bigger problem. If it is
to be calculated in real-time, which vehicles are currently
close enough to form a cluster of Car2Car-Communications,
this requires multiple matrix multiplications. So, in general,
these multiple matrix multiplications are required in different
modern mobility scenarios such as Car2Car-Communication or
intelligent parking systems. Only for the example of Germany
with about 45.8 million vehicles [12], this results in a large
matrix multiplication with 48.5 million x 48.5 million entries.

Matrix multiplications can thus be used to determine,
which vehicles can form a communication cluster together.
This information can, for example, be used to initially ex-
change and aggregate sensor data among the vehicles in the
cluster. Then, only a single vehicle provides all aggregated
data via cellular connection to other clusters. This allows not
all vehicles to communicate redundant information, but the
information is only reported once per cluster. This can save
bandwidth and relieve communication networks, especially if
in the future millions of vehicles can send huge data in real-
time. This scenario is shown in Fig. 2:

In order to identify dynamic clusters with matrix multipli-
cations, a quadratic m-x-m matrix M is initially created in the
dimension of the amount of m-vehicles. As soon as vehicles
are below a maximum allowed communication distance rmax

between each other, the matrix M receives a 1-entry. If
vehicles are spaced apart from this distance, a 0-entry is made.
This marks all vehicles that are too far apart to communicate
directly with each other. Fig. 3 shows this:

This simple adjacency matrix M thus shows only the direct
connections. As vehicle A is in communication range to B
and B to C. D is not in range to any vehicle. But it is not
directly apparent that an indirect connection of A over B to C is
possible. This can be determined with matrix multiplications of
the quadratic adjacency matrix M, containing the connections
between the vehicles. The variable n describes the ’jump
depth’. For example, for n = 2 it is possible to check whether
vehicle A is indirectly connected to C via B.

Ztmp =

n∑
i=1

M i (1)

As soon as an entry in Ztmp is greater than 1, exactly 1
is entered at the same position in Z. Otherwise it is entered
value 0:

Zi,j = 1 if Ztmpi,j
> 0 (2)

Zi,j = 0 if Ztmpi,j
= 0 (3)

for all i, j = [1, ...,m] (4)
m : amount of vehicles (5)

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 2. Scenario of Car2Car-Communication

The result of those calculation from M over Ztmp to the
final cluster-matrix Z is shown in Fig. 4. In this example,
only n = 3 ’jumps’ were calculated. So, it was calculated
how indirect jumps over other vehicles will lead to a cluster
connection.

Fig. 4 shows, that there is no connection for D to any
other vehicle. But it shows, that there is a indirect connection
between A and C. This information was not directly available
in the primary matrix M . This new information in Z can now
be used to optimize scenarios such as in Fig. 2.

With very large matrices, a very bulky and big problem
arises. For the calculation of scenarios that take into account
the entire German vehicle market, this would quickly lead to
a large demand for computing power. In this regard, the next
Section explains how this problem can be decomposed in order
to solve it more efficiently in parallel (for example, with the
future use of microservices).

B. The decomposition of the problem

For a simple matrix multiplication of 4x4 adjacency matrix
Mtmp = M*M , many intermediate steps must be performed.

Figure 3. The primary distance matrix

For example, to calculate the element Mtmp1,2
, the following

sub-calculations are needed:

Mtmp1,2 = M1,2∗M2,1+M2,2∗M2,2+M3,2∗M2,3+M4,2∗M2,4

(6)
In the case of very large matrices, the entire calculation

effort should then be decomposed. Fig. 5 shows this exemplary.
A slightly more visual representation is provided in Fig. 6.

This shows how parts of the original matrix can be broken
down into different tasks.

For example, the two tasks, TASK A and TASK B could
very easily be represented as microservice, as shown in Fig. 5.
Particularly in the case of very large matrices, thousands
of micoservices can solve the cluster building problem in
parallel. Each microservice only needs a fraction of the system
resources that would be required for the entire problem. The
mathematical modeling presented here thus makes it possible
to easily map the entire (huge) computing problem for small
microservices.

In the next Section, this concept will be examined. Some
measurements are made, in which the cpu time demand is
documented. It will show how the decomposition of the general
calculation problem in smaller sub-problems can help to save
computing resources.

IV. MEASURING THE EFFECTS

At first, the computing resources (CPU Time) for solving
the total and undivided matrix multiplication is measured.
The matrix has the dimension 1024 x 1024 and the depth of
computation was n = 3 (see (1) and Fig. 4). It is therefore
calculated which vehicles (indirectly) can build a Car2Car-
Communication with each other. Indirect means that vehicles
build a communication bridge over other vehicles that are
close enough together in the cluster. Such a communication
bridge over other vehicles is indicated in Fig. 3. For purposes
of better illustration, only one communications bridge over a
single vehicle is illustrated in Fig. 3. However, the following
calculation considers communication bridges for a deeper

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 4. The result of the matrix multiplication

Figure 5. The decomposition of a matrix multiplication

calculation of a total of 3 vehicles. This is the calculation
depth n = 3. The hardware corresponds to current standard
hardware from the year 2017 with a 4x3.30 Ghz processor
and 8 GB Ram.

Next, the problem is decomposed into several equal sub-
problems as mentioned in Fig. 5. The parallel basic prototype

Figure 6. A example of matrix decomposition

microservices were realizes with MATLAB R2016b 64bit [1].
In future work, more common development environments and
standards in designing microservices could be used [13] [14].
But for this first measurements of the general potential of
partitioning, this more mathematical approach gives a quite
good overview.

The dividing of a huge problem into smaller sub-problems
reduces the general demand for computing resources per
calculation instance, but also increases the communication
overhead between all instances and will lead to a slightly
longer time to calculate the problem. Depending on the cost
of the microservices, the problem size and requirements with
regard to real-time calculation, an different partitioning of the
problem situation can be useful.

Table I gives a first impression, how different partitioning
tasks affect the demand of computing resources (CPU Time)
and the communication overhead (Communication Time).

TABLE I. THE EFFECT OF DECOMPOSITION

Partitions CPU Time Communication Time Total Time
1 70.41 sec 0.0 sec 70.41 sec
2 32.09 sec 1.37 sec 33.47 sec
4 16.29 sec 2.48 sec 18.77 sec
8 8.38 sec 4.55 sec 12.93 sec
16 4.53 sec 8.84 sec 13.38 sec
32 2.60 sec 17.97 sec 20.58 sec
64 1.64 sec 36.32 sec 37.97 sec
128 1.13 sec 69.72 sec 70.86 sec
256 0.85 sec 138.97 sec 139.83 sec

The results from Table I were visualized in Fig. 7. It can
be seen that a very high parallelization does not necessarily
have to lead to a faster calculation.

It can be seen that with higher partitioning, the computation
time per task decreases, but the communication effort to
compose the final solution increases continually. With the used
hardware (4x3.30 Ghz CPU and 8 GB Ram) the problem could
be calculated fastest, if it is divided into eight sub-problems for
the parallel calculation. This is marked in Fig. 7 with the dotted
line. The optimal partitioning always depends on the hardware
used. For the hardware used here, the optimum for partitioning
is eight sub-problems. Cloud computing infrastructures with a
large number of parallel processors would lead to even faster
parallel calculations. But these first measurements can already
show that a parallelization of matrix multiplications can lead
to a efficient speed up.

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 7. Visualization of the measurements

After presenting these first measurements, the next Section
is followed by the discussion and outlook.

V. CONCLUSION

Without any partitioning, the total computing time was
70.41 sec. The best speed up was realized with a parallelization
of 8, resulting in a total computing time of 12.93 sec. This
is a speed up factor of 5.44x. A very fine partitioning with
256 partitions in parallel results in a total computing time of
138.83 sec. This is nearly two times slower than the initial
computation time without any parallelization. So, the speed
up factor was only 0.50x. This shows that the parallelization
must be carefully chosen depending on the general size of
the problem situation and the available hardware, in order to
benefit from the optimal acceleration.

There are several parallelization possibilities. For example,
the matrix multiplication could also be processed in parallel
with typical MapReduce methods [15]. However, in the case of
the MapReduce method, the coordination effort resulting from
the map-layer and the reduction-layer, and the allocation to
key-value pairs, can lead to somewhat more communication
effort. But especially the matrix multiplications are charac-
terized in particular by the fact that these can be split very
easily. No prior sorting and assignment of the individual tasks
to key-value pairs is necessary. The parallelization of matrix
multiplication can be implemented very easily, without any
key-value pairing and mapping-assignments (shown in Fig. 5).
Therefore, the decomposition of huge matrix multiplication in
very simple microservices seems to be appropriate.

Depending on the available computing power per microser-
vice and the size of the overall problem, there is an optimum
for the parallelization. With regard to the problems discussed
here, it has been shown that the optimum of parallelization
and additional communication effort is the fastest with a
partitioning of 8 parallel tasks. Then the combination of
additional communication effort and the acceleration of the
parallelization is the fastest. With increasing parallelization, the
pure calculation is still accelerated, but the entire processing
time is reduced by the increasing communication effort, when
the partial solutions are combined into the total solution.

In future work, the execution of the microservices with
strongly optimized frameworks like Apache Hadoop / Spark
[13] [14] could be investigated. The communication effort
could be further reduced and even faster speed up factors
could be reachable. So, summarizing, a parallelization of
matrix multiplication (for example with the use of very simple
microservices) can lead to a fast reduction in the computa-
tion time, but must be carefully chosen in order to achieve
maximum efficiency.

REFERENCES
[1] “The MathWorks, Inc.” 2017, URL: https://mathworks.com/products/

matlab.html [accessed: 2017-12-06].
[2] M. Zuch, A. Hausotter, and A. Koschel, “Efficiency in the electro-

mobile mass market (Original German Title: Effizienz im elektro-
mobilen Massenmarkt),” INFORMATIK 2015 – 45. Jahrestagung der
Gesellschaft für Informatik, Cottbus (DE), vol. 45. Jahrestagung, 2015,
pp. 5–6.

[3] M. Zuch, A. Koschel, and A. Hausotter, “Partitioning model for
mobile electric vehicle data,” Digital Marketplaces Unleashed - Mobility
Services, vol. IEEE 2016, 2017, pp. 1–3.

[4] C. Linnhoff-Popien, R. Schneider, and M. Zaddach, Eds., Digital
Marketplaces Unleashed. Springer, Berlin, Oct. 2017, ISBN: 978-
3-662-49274-1.

[5] H. G. Gene and C. F. v. L., Eds., Digital Marketplaces Unleashed. J.
Hopkins Uni. Press, Dec. 2012, ISBN: 978-1421407944.

[6] J. P. Gray, Ed., Parallel Computing: Technology and Practice. IOS
Press, Apr. 1995, ISBN: 978-9051991963.

[7] R. RV, Ed., Spring Microservices. Packt Publishing, Birmingham, Jun.
2016, ISBN: 978-1786466686.

[8] S. Sharman, R. Rv, and G. D., Eds., Microservices: Building Scalable
Software. Packt Publishing, Birmingham, Jan. 2017, ISBN: 978-1-
78728-583-5.

[9] T. Hunter, Ed., Advanced Microservices: A Hands-on Approach to
Microservice Infrastructure and Tooling. Apress, Jun. 2017, ISBN:
978-1484228869.

[10] “LeanIX Microservices Survey,” 2017, URL: https://www.cio.de/a/
microservices-machen-die-it-schneller-und-agiler,3329517 [accessed:
2017-12-06].

[11] “Microservices trends 2017: Strategies, tools and frameworks,” 2017,
URL: https://jaxenter.com/microservices-trends-2017-survey-133265.
html [accessed: 2017-12-06].

[12] “Number of German passenger cars,” 2017, URL: https://www.kba.de/
DE/Statistik/Fahrzeuge/Bestand/bestand node.html [accessed: 2017-12-
06].

[13] “Apache Hadoop 2.7.4,” 2017, URL: http://hadoop.apache.org/docs/
stable/ [accessed: 2017-12-06].

[14] “Spark Overview,” 2017, URL: https://spark.apache.org/docs/latest/ [ac-
cessed: 2017-12-06].

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” OSDI 2004, vol. Google Inc, 2004, pp. 2,4,10.

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://www.cio.de/a/microservices-machen-die-it-schneller-und-agiler,3329517
https://www.cio.de/a/microservices-machen-die-it-schneller-und-agiler,3329517
https://jaxenter.com/microservices-trends-2017-survey-133265.html
https://jaxenter.com/microservices-trends-2017-survey-133265.html
https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/bestand_node.html
https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/bestand_node.html
http://hadoop.apache.org/docs/stable/
http://hadoop.apache.org/docs/stable/
https://spark.apache.org/docs/latest/

	Introduction
	Motivation
	Contribution

	Prior and related work
	The concept for handling huge matrices
	The definition of the general calculation problem
	The decomposition of the problem

	Measuring the effects
	Conclusion
	References

