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Abstract—Service meshes can be seen as an infrastructure 

layer for microservice-based applications that are specifically 

suited for distributed application architectures. It is the goal to 

introduce the concept of service meshes and its use for 

microservices with the example of an open source service mesh 

called Istio. This paper gives an introduction into the service 

mesh concept and its relation to microservices. It also gives an 

overview of selected features provided by Istio as relevant to the 

above concept and provides a small sample setup that 

demonstrates the core features.   
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I. INTRODUCTION 

Nearly every organization is driven by providing the best 
customer service. In the past this was mainly achieved by 
addressing the requirements of users with functional software 
features. But recently the focus shifted to non-functional 
requirements. Important aspects of today’s software 
development and operation are key performance indicators 
like short time-to-market, high availability and elastic 
scalability. The fundamental soft skills were laid down by the 
Agile Manifesto [1], which covered four principles of work in 
the software development process and emphasized customer 
satisfaction.  

Therefore, four principles of modern work have been 
introduced that aim on deploying new software features to 
customers as early as possible. The major technical step was 
the introduction of Cloud Computing [2] and the rise of public 
cloud service providers like Amazon Web Services, Google 
Cloud Platform and Microsoft Azure. Nowadays anyone can 
have access to high performance infrastructures, given only 
cheap client devices and internet connection. This evolution 
empowered anybody to build, run and offer services without 
the need of big initial investments. Based on this mindset and 
technology, modern project management methods like Scrum 
and DevOps have been developed and are widely adopted in 
the industry today. In most agile environments the traditional 
monolithic design of applications was too cumbersome. 
Therefore, approaches like Domain Driven Design (DDD) [3] 
helped to split monoliths into smaller pieces alongside 
bounded contexts. Those pieces were finally orchestrated and 
integrated in Software Oriented Architecture (SOA) via an 
Enterprise Service Bus (ESB) [4]. 

With the release of the container technology Docker in 
2013, microservice architectures gained a new momentum. 
Containers were a kind of game changer because they 
enabled microservices according to the modern definition by 
Martin Fowler: 

“[...] there are common characteristics around 
organization around business capability, automated 
deployment, intelligence in the endpoints, and decentralized 
control of languages and data” [5]. 

To run container-based microservice architectures in 
production grade environments, orchestrators like Kubernetes 
and Apache Mesos have been developed. The speed of 
innovation and agility led to extremely distributed and chaotic 
deployments. Adrian Cockroft described this scenario as 
“Death Star of Microservices” [6]. Fig. 1 shows a visualization 
of communication between microservices at Netflix. 

 

Fig. 1. Death-Star of Microservices at Netflix [6]. 

Obviously, it seems quite hard to run and maintain this 
architecture in an agile manner, while still having to reach 
high availability and reliability. Because of that, resilience 
frameworks like Netflix OSS (https://netflix.github.io/) have 
been developed and provide mechanisms like service 
discovery, circuit breaking and latency and fault tolerance. For 
popular programming languages and frameworks libraries are 
available, e. g., for Java and Spring Boot (https://spring.io/ 
projects/ spring-cloud-netflix). 
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Nevertheless, the approach of implementing this 
functionality into the microservices themselves has a number 
of disadvantages: 

• Increased complexity of microservice code 

• Limited choice of programming languages 

• Low reusability of microservice artifacts 

• Difficult collaborative development. 

Service meshes are an approach to fix those points by 
extracting any infrastructure related code from the 
microservices into a dedicated layer. 

II. FUNDAMENTALS 

A. Service Mesh Concept 

The service mesh layer is located between the 
microservice and orchestration layers. This stack is shown in 
Fig. 2. In the orchestration layer point of view, the service 
mesh is just another application that needs to be managed. 

 

 

Fig. 2. Service mesh layer between application and orchestration. 

The basic idea is to route all ingress and egress traffic 
from microservices through the service mesh layer. This way, 
the traffic can be observed and modified through the service 
mesh. The service mesh includes Application Programming 
Interfaces (APIs) that let it for an example integrate into 
logging platforms, telemetry or policy systems. Basically, a 
service mesh can provide features in four areas: 

• Security (encryption, decryption) 

• Traffic management (routing, canary deployments) 

• Policies and telemetry (authentication, fault 
detection) 

• Observability (logging, metrics). 

For implementing service meshes seamlessly into 
microservice architectures the sidecar pattern is used. This is 
explained next. 

B. Sidecar Pattern 

In the sidecar pattern all microservices are appended with 
so called “sidecars” that can carry out supporting tasks for the 
microservice. In a simple example of a webhosting 
microservice, sidecars can periodically update the webspace 
directory with content of a remote repository [7]. In the 
context of service meshes they proxy all network traffic. This 
scenario is shown in Fig. 3. The sidecar is independent 
configurable and can intercept and modify all packets. 

 

Fig. 3. Sidecar pattern. 

This concept can be applied to various systems and is 
agnostic to specific technologies or products. It is applicable 
for environments that already use dedicated deployment units 
such as virtual machines or containers. 

C. Dynamically Configurable Proxies 

The main requirement are proxy sidecars that can handle 
configuration changes at runtime. Common proxy servers like 
Apache Httpd and Nginx are not suitable. Instead Istio and 
other service meshes 
(https://www.hashicorp.com/products/consul/service-mesh/, 
https://aws.amazon.com/de/app-mesh/) use the Envoy 

(https://www.envoyproxy.io/) proxy, which can be 
configured at runtime and handle all sorts of Transmission 
Control Protocol (TCP) connections. 

D. Docker and Kubernetes 

As mentioned before, service meshes can be used in 
different technology stacks. Because Docker and Kubernetes 
are used in this work, a short overview about those and their 
meaning in the context of service meshes are given next. 

Docker is the de-facto standard for containers in cloud 
computing. It uses immutable software artifacts (images), 
which can be instantiated to running processes (containers). 

Kubernetes is a framework for orchestration of containers. 
It abstracts multiple machines as one cluster, where workloads 
can be run as containers. It can be managed over an API that 
is accessed via kubectl Command Line Interface (CLI). The 
API is extensible over Custom Resource Definitions (CRDs) 
but contains a number of basic types. The most important 
types for this work are as follows: 

• Namespaces are organizational units of resources in a 
cluster. They enable global configuration of resources 
inside a namespace as well as general network 
policies between namespaces. 

• Labels are metadata for resources and enable dynamic 
selections of resources. For example, this is useful in 
scenarios like load-balancing, where you want to split 
traffic to dynamically changing group of containers. 
In the context of service meshes, namespaces can be 
labeled with specific attributes, so that sidecar 
containers get automatically injected in all contained 
Pods without any further configuration. 

• Pods are deployment units of workloads and consist 
of one or more containers. Containers in a Pod share 
their network addresses, port space, hostname and can 
communicate via Inter Process Communication 
(IPC). Because of that, they are always deployed on 
the same cluster node. In the context of a service 
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mesh, Pods are used to deploy a microservice 
container along with its own sidecar proxy container. 

• Services abstracts the access to services provided by 
Pods. Because Pods are scheduled to cluster nodes 
depending on current resource requisition, their IP 
addresses are permanently changing and not suitable 
for referencing. Instead, services define static 
identifiers and use labels and annotations to route 
traffic correctly. 

III. EXAMPLE: ISTIO 

A. Architecture 

The main architectural components in Istio are divided 
into so called Data Plane and Control Plane, each of 
which with a distinct responsibility. The planes themselves 
have additional parts that provide the actual functionality 
of Istio. Overall, Istio as a service mesh is designed to be 
independent of the underlying technology of the orchestration 
layer. Though the reference implementation and examples do 
prefer Kubernetes. The control plane consists of the four parts 
Mixer, Citadel, Galley and Pilot, whereas in the data plane 
everything is handled through a proxy [8] [9]. Fig. 8 shows an 
overview of Istio’s architecture. Next, each part will looked in 
more detail. 

1) Data Plane: The data plane handles the ingress and 
egress network traffic. This functionality is implemented 
transparently to the actual application and enables the addition 
of further capabilities without the need of implementing it 
in the application itself. As mentioned, Istio uses Envoy as 
proxy. Envoy itself is specifically designed to be used in 
service-oriented architecture-type applications and is placed 
alongside them. Kubernetes auto-injects the Envoy proxy 
inside a microservice Pod and configures the Pods routing 
tables. The overall flow of communication is shown in Fig. 4. 
This design leads to two advantages: First, the language of the 
application is no longer relevant. That means the services in a 
mesh can be implemented in a polyglot set of languages and 
all the communication is handled by Envoy. Second, Envoy 
can be upgraded and deployed in a transparent way with help 
of library upgrades. [10] 

Features and technologies that are supported by Envoy 
include gRPC (https://grpc.io/), local balancing, HTTP1.1, 
HTTP2, metrics aggregation, health checking and more 
(https://www.envoyproxy.io/). Furthermore, Envoy is written 
in C++, which should be beneficial for performance. 

2) Control Plane: The role of the control plane is to act as 
a source from where policies and the configuration is pushed 
to the data plane. Besides the three main components Mixer, 
Pilot and Citadel, Galley acts as the more top-level part for 
the Istio configuration. It shields the other components of 
specifics of getting the actual configuration from the platform 
(e.g., Kubernetes) that lies beneath [11]. 

Mixer: The main responsibility of Mixer consists of 
communication with the Istio proxies to get telemetry data, to 
push policies, to apply custom metrics, to perform access 
control checks and to deploy rate-limiting rules [9]. 

The architecture of Mixer is shown in Fig. 4; it is designed 
to abstract the aforementioned functionality from the services 
and the rest of the Istio components. It also provides a plugin-
model with Mixer as an intermediary. Plugins in this model 
are called adapters. Through the adapter API different 

backend system can interact with Mixer. Prior to forwarding a 
request to the service, the Envoy sidecar proxies communicate 
with Mixer to check if rules apply. They also obtain telemetry 
data after the request. The Envoy sidecar proxies have caching 
and buffering functionality so that Mixer is not called 
frequently. 

Mixer’s main configuration mechanism are attributes. 
These attributes describe individual requests as well as the 
environment around them. They are comprised of a type and 
name. They describe, e.g., the origin IP address of a request 
and response codes. The main source of those attributes is the 
Envoy proxy even though the adapters plugin model allows 
for further attribute data. Communication is then initiated to 
the different backends after the attributes are handled by 
Mixer [8]. 

 

Fig. 4. Mixer (source: https://istio.io/docs/reference/config/policy-and-
telemetry/mixer-overview/). 

Pilot: The traffic management responsibility lies in the 
Pilot component of Istio. Pilot is organizing and managing the 
sidecar proxies. When a change occurs in the topology all 
sidecars are informed by Pilot. That means that each of the 
sidecars can adjust their information about available 
microservices and how to route traffic. Further features are 
service discovery and more detailed traffic routing [9]. 

Citadel: It handles everything related to security and 
certificate distribution, signing and revocation. Due to the 
certificates, mutual Transport Layer Security (mTLS) can be 
used for identity and encryption between the microservices. 
All the traffic that traverses between the microservices is 
therefore encrypted transparently without changes to the 
actual application [9]. 

Galley: Istio can be used with different platforms like 
Kubernetes. Which means that the configuration has to be 
abstracted from the platforms. Galley is the component, which 
provides this functionality. Moreover, it validates the 
configuration and is responsible for distributing it to the 
respective components inside Istio [8]. 

B. Security 

Security nowadays is a crosscutting concern in modern 
application development lifecycles and therefore also an 
important requirement in microservices deployments. Threats 
are not only coming from outside the service mesh but can 
also occur inside the mesh. Therefore, all the traffic in the 
mesh is automatically not trusted, which is called a zero-trust 
approach. Because of that assumption, different requirements 
arise. One of the foundations of every security concepts are 
strong identities. Istio provides means to assign identities to 
services as well as to end users/devices. The service identities 
are based on the underlying platform, in case of Kubernetes 
the Kubernetes service accounts are used. But if the platform 
itself does not provide this functionality, Istio can interface 
with for example AWS IAM user/role accounts, GCP service 
accounts and others (see [8]). 



For user/device identities and authentication different 
providers can be used via OAuth (https://oauth.net). 
Furthermore, with the use of JWT (JSON Web Tokens) 
authentication can be broken down to the request level [8]. 

Overall Istio provides support for the typical security 
properties: 

• Authentication 

• Authorization 

• Auditing. 

mTLS: mTLS stands for mutual Transport Layer Security 
and is used for actual authentication and encryption. It 
helps protecting against replay and man-in-the middle attacks. 
Istio uses standard X.509 certificates. The identities in the 
certificates are described in the SPIFFE (https://spiffe.io/) 
format. In Kubernetes storing the certificates and keys is done 
using Kubernetes built-in secrets. If certificates are no longer 
valid or revoked, Citadel will update and overwrite the 
Kubernetes secrets. Pilot pushes configuration to Envoy about 
which of the service accounts may run a specific service. In 
the authentication process one Envoy proxy is acting as the 
client and establishes a TLS handshake with the “server” side 
Envoy. To make sure that the server side is actually allowed 
to run the specific service, there exists a mapping, called 
secure naming, from the identity in the certificate to the name 
of the service in the DNS. The “client” checks this secure 
naming information and continues with establishing the TLS 
connection or aborts it altogether [8]. 

Authentication Policies: Enabling mTLS can be done 
on a variety of levels (mesh, namespace, service) using an 
authentication policy. In general, such policies are checked 
whenever a service receives a request. It is also possible to 
configure rules regarding mTLS for traffic going to a service. 
This is done via Destination Rules [8]. 

Configuring mTLS for a specific service can be done in 
the following way: 

apiVersion: "authentication.istio.io/v1alpha1" 
kind: "Policy" 
metadata: 
  name: "servicename" 
spec: 
  targets: 
    - name: service 
  peers: 
    - mtls: {} # STRICT mTLS 
 
Instead of “Policy” there also exists a “MeshPolicy” for 

mesh configuration. Namespaces can be configured by adding 
”namespace” to the metadata and leaving out the target. 
The default mode of mTLS is STRICT meaning only mTLS 
connections are allowed and therefore encrypted traffic. 
Beside STRICT there is also a mode called PERMISSIVE. This 
mode also allows for plaintext traffic [8]. 

Authorization: As the case with the authentication 
policies, authorization policies can be configured on a mesh, 
namespace and service level. On Kubernetes, Istio provides a 
single custom resource for the definition: 
AuthorizationPolicy. Rules can be defined to service-to-
service and/or end-user-toservice communication. Policies are 
evaluated within Envoy at runtime via a specialized engine. 
After a request is examined the engine reports back ALLOW 
or DENY as a result and therefore grants or prohibits access 
to a resource. One can distinguish three cases: 

• Authorization policy, which allows access 

• No information in the authorization policy but applied. 
That leads to a deny all 

• A simple allow which as the name suggests grants 
access to a resource. 

The basic properties of an authorization rule are the 
question who is going to do something, which conditions have 
to be met in order to do it and what are they going to do. The 
rule definition allows for specifying exactly that. The who, 
what and condition parts have corresponding configuration 
sections in the policy, namely: from, to and when. 
Additionally, a selector section can be used to define the target 
resource in the service mesh [8]. 

A sample to deny all authorization rule for a service would 
look as follows: 

 
apiVersion: security.istio.io/v1beta1 
kind: AuthorizationPolicy 
metadata: 
  name: DenyAll 
  namespace: mynamespace 
spec: 
  {} 

This “DenyAll” rule uses an empty definition which leads 
to traffic being blocked. The next listing shows a rule where 
services from the namespace mynamespaceB are allowed to 
access services with the label myapp for version v1 in 
namespace mynamespaceA. But the only action that is 
allowed is the GET operation. 

apiVersion: security.istio.io/v1beta1 
kind: AuthorizationPolicy 
metadata: 
  name: authrule 
  namespace: mynamespaceA 
spec: 
  selector: 
    matchLabels: 
      app: myapp 
      version: v1 
  rules: 
  - from: 
    - source: 
      namespaces: ["mynamespaceB"] 
    to: 
  - operation: 
      methods: ["GET"] 

Configurations that would better fit certain security 
requirements are also possible. 

C. Traffic Management 

Every microservice system needs some way to route 
requests between microservices and route a request from the 
outside to the correct microservice. One of the core tasks of 
Istio is the intelligent management of calls between services 
in the service mesh. In Istio traffic rules are specified via Pilot. 
Pilot is the core component for traffic management and 
consists of four components. The rule API is the point for 
specifying high-level traffic management. The platform 
adapter implements the necessary controllers for the used 
platform (e.g., Kubernetes). The abstract model hides all the 
platform specific functions and the Envoy API is the interface 
for the communication with other sidecars. [8] An overview 
of the Pilot architecture can be found in Fig. 5. 



 

Fig. 5. Pilot Architecture [8]. 

It is only necessary to specify which call behavior is 
wanted without having to specify which Kubernetes Pod or 
VM should process these calls. The call behavior and the 
assignment of the calls to the runtime instances is handled by 
pilot and Envoy. Istio’s traffic management features are: 

• Circuit breakers 

• Timeout and retries 

• A/B testing 

• Canary rollouts. 

An interesting feature is the content-based traffic steering. 
As shown in Fig. 6, it is possible to direct traffic to specific 
versions based on the device (Android/iOS) which makes the 
request. 

 

Fig. 6. Content-based traffic steering [12]. 

D. Policies and Telemetry 

With Istio it is possible to configure custom policies for an 
application. Policy management includes access controls 
(blacklists and whitelists), rate limits and quotas. The Mixer 
component is responsible for providing the policy controls and 
also does telemetry collection. To achieve this functionality 
all service-sidecars are calling the mixer before each request 
to perform precondition checks as well as after each request to 
report telemetry data. The sidecar has local caching so that 
precondition checks can be performed from cache. Also, the 
sidecar buffers outgoing telemetry so that it only calls Mixer 
infrequently and reduces the network traffic (first level pre-
sidecar cache). The second level shared cache in the Mixer 
collects and buffers incoming data from the connected 
sidecars. The Adapter API of Mixer abstracts the details of 
different policy and backend system so that it is possible to 
deal with different infrastructure backends for logging, quotas, 
and telemetry [12]. Mixer’s topology shows Fig. 7. 

 

Fig. 7. Mixer Topology [12]. 

E. Observability 

Observability is a vital role in a service mesh especially 
when it comes to “debugging” and this is the main reason 
why people choose to adopt to a service mesh. Because in an 
complex environment it is crucial to know what happens in 
your system [13]. In Istio it is achieved by: 

• Tracing 

• Logs 

• Metrics. 

1) Tracing: If problems occur in distributed systems, it is 
often difficult to find the underlying cause. Troubleshooting 
within a service mesh therefore regularly presents a major 
challenge for development and operation. A request can 
traverse the mesh on different paths over several service calls. 
Problems can occur at different points in the process, and it 
can be difficult to find the reason of timeouts and latency 
problems without appropriate support. It is also difficult to 
detect error cascades without a suitable tool. Moreover, the 
amount of services in a big application can easily be reach a 
point where it is not obvious how everything interacts with 
one another [9]. Istio takes distributed tracing tools like Zipkin 
or Jaeger into account. For this purpose, Istio collects all 
necessary information via the sidecar and transfers it to the 
configured tracing system. 

Besides the direct sidecar-to-tracing system 
communication it is also possible for Mixer to integrate with 
a tracing backend system and the collection. This gives more 
control over the configuration since not all backends are 
supported by the sidecar proxy Envoy [8]. 

Tracing depends on correlating the requests coming into 
the sidecar to the requests leaving the sidecar. For that to work 
properly, Istio is expecting certain HTTP headers to be present 
if HTTP is used to service communication. Subsequently, this 
adds a requirement to the microservices themselves, if tracing 
is necessary, the services have to add headers. Therefore, 
tracing is not transparent [14]. 

2) Logs: Logging in a service mesh is limited to network 
traffic because otherwise changes in the microservice 
themselves would be necessary. Istio can configure exactly 
what has to be logged and also the format of the logs being 
generated. For example, it can include HTTP service codes 
[14]. 



A basic form of logging is the one provided by Envoy. 
The proxy just sends access logs to the standard output. If 
Kubernetes is used, the logs can be examined using kubectl 
[8]. In addition to that, Mixer allows for a more fine-grained 
control of the logging configuration. Therefore, CRDs like 
rule instance and handler can be used. 

Log entries are defined by an instance which is basically a 
template. In the instance all Istio attributes that should be part 
of a log entry are listed. 

... 
kind: instance 
metadata: 
  name: mylog 
spec: 
compiledTemplate: logentry 
params: 
severity: ’"warning"’ 
timestamp: request.time 
variables 
... 
user: source.user | "unknown" 

A handler tells Istio how the log entries as instances are 
being handled. For example, should the output be in a JSON 
format. It also includes the desired levels. 

... 
kind: handler 
metadata: 
name: myloghandler 
... 
spec: 
compiledAdapter: stdio 
params: 
severity_levels: 
warning: 1 
outputAsJson: true 

Rules define which traffic in the mesh should be logged. 
A rule also glues the handler and instance together. 

... 
kind: rule 
... 
spec: 
match: "true" 
actions: 
- handler: myloghandler 
instances: 
- mylog 

The above examples are adapted from the Istio bookinfo 
samples [8]. A more sophisticated approach would be to 
forward the logs to a system with further analysis functionality 
like Elasticsearch. 

3) Metrics: Istio can collect a variety of metrics about the 
network and services. These metrics include information 
about errors, latency and traffic volume which can be used to 
monitor the overall health of the service mesh [8]. For basic 
network metrics the Envoy proxies can automatically provide 
the necessary information. To get more detailed metrics from 
the network requests, Istio needs to know about the protocols 
involved in a communication. For example, errors rates can be 
deducted from HTTP status codes. Besides the Envoy metrics, 
additional ones are provided between services and from the 
components of the control plane [8]. Moreover, if the 
underlying platform can provide metrics this can also be used 
inside Istio [14]. 

The configuration of metrics collection is similar to the 
one regarding the logs. An instance, a handler and a rule is 
needed. The values for the metric are defined in the instance. 
Mixer gets attributes from itself and Envoy. A handler 
configures mappings between the instance to a format which 
can be understand by a backend system like Prometheus 

(https://prometheus.io/). And the last part defines a rule for the 
kind of traffic where metrics should be collected [8]. 

 

IV. EXPERIMENTS 

Some functionality was tested using the sample 
BookinfoApp provided by Istio. The web app is composed of 
different microservices and quite simple. One product service 
written in Python, a reviews service with different versions 
written in Java, a details service written in Ruby and a ratings 
service written in NodeJs. To have some real-world 
deployment setting, the Google Cloud Platform (GCP) was 
used. First, a four-node cluster was setup. Second, Kubernetes 
as underlying platform was deployed. Third, within the 
CloudShell of GCP, Istio was installed and sidecar injection 
for the default namespace enabled. The goal was to understand 
and test different aspects of a service mesh, specifically the 
observability and traffic routing functionality. Regarding 
observability Istio can interface with a variety of tools and the 
one used in the experiment is called Kiali (https://kiali.io/). 
Kiali has features for viewing different metrics and visualizing 
the topology of the mesh. Furthermore, it has the capability to 
configure basic traffic management rules and validating them. 

A. Scenario 

The main scenario was about routing traffic to the various 
versions of the reviews page depending on the user agent of 
the client calling the BookinfoApp. The difference among the 
versions of the reviews page is simply the fact that version 
one does not display review stars and is not calling the rating 
service, version two has grey stars and version three has red 
stars on the page. In conjunction with the user agent headers 
the following cases arise: 

• iOS users with respective agent will be served reviews 
page version 1 

• Android users will be served version 2 

• Windows users will get version 3 

• Everyone else will also get version 3. 

B. Implementation 

The scenario was implemented using the two Kubernetes 
CRDs virtual service and destination rule. The virtual service 
is responsible for routing the traffic to a service and uses 
definitions from the destination rule. The destination rule is 
applied after the traffic is routed. In this case the destination 
rule is used to define subsets that comprise the review service. 
The excerpt of the virtual service looks as follows: 

... 
kind: VirtualService 
  name: reviews-virtualservice 
  namespace: default 
spec: 
  hosts: 
    - reviews 
  http: 
  - match: 
    - headers: 
      user-agent: 
        regex: .*iPhone.* 
    route: 
    - destination: 
      host: reviews 
      subset: version-v1 
... 
  - route: 
    - destination: 
      host: reviews 
      subset: version-v3 



Important is the “match” section for the http header and 
user agent. A regex is applied when a request is bound for the 
reviews service. When a match is true the request will be 
forwarded to the destination service with desired version. If 
nothing matches the last route is used. The rules for Android 
and Windows user agents look like the one for iOS and 
are therefore omitted. The subsets in the virtual service are a 
direct reference to the destination rule: 

... 
kind: DestinationRule 
metadata: 
name: dr-reviews 
namespace: default 
spec: 
host: reviews 
subsets: 
- labels: 
version: v1 
name: version-v1 
... 

This rule defines three subsets for the reviews service. 
Again, the last two were omitted because they are similar. The 
name that was chosen in the rule is exactly the one in the 
virtual service. Therefore, both the rules work together to 
accomplish proper traffic management. To finally test 
everything two bash scripts were created that simulate 
requests from different user agents. The scripts contain a while 
loop with a call to the public facing IP of the cluster. The 
request is made via curl which has the “-A” switch for setting 
the user agent. One user agent in the scripts was then set to 
iOS users and the other one to Android users. While starting 
the requests, Kiali was simultaneously observed to see the 
traffic being routed through the mesh. 

C. Results 

It was easy to setup Istio with Kiali on the Google 
Cloud with Kubernetes. Moreover, configuring basic traffic 
rules without changing anything in the microservices sample 
app worked out to be surprisingly straightforward. The 
visualization of the mesh in Kiali was also not a difficult task 
since the mesh is sending the required data automatically. An 
overall good experience with expected results. 

V. CONCLUSION 

The service mesh concept is the result of an evolution in 
the software development process. Beginning with the Agile 
Manifesto and the introduction of Cloud Computing as well 
as public cloud platforms like AWS, GCP or Azure to 
container technology like Docker. State of the art are today’s 
microservices. But microservices have problems as well. 
Coupling infrastructure code with specific framework 
dependencies into microservices leads to an increased 
complexity of code and limited choice of programming 
languages. 

Section II focuses on the fundamentals for a service mesh. 
The service mesh as an additional abstraction layer, the 
sidecar pattern for the microservices and container 
orchestration with Kubernetes were explained. Then the 
service mesh Istio was introduced. Showing the main 
architectural components Data Plane and Control Plane 
and the more fine-grained components Citadel, Mixer, Galley 
and Pilot. Each component has special functionalities which 
are explained on the basis of the four features Istio can 
provide: security, traffic management, policies and telemetry 
and observability. These four features were further analyzed 
by using the BooInfoApp provided by Istio. The setup 
includes GCP, a four-node cluster, Kubernetes and Kiali for 

viewing metrics and visualizing the topology of the mesh. The 
scenario was routing traffic to different versions of the review 
page depending on the user. It was possible to differentiate 
between iOS, Android, Windows and all other user of the 
application. 

The needed steps for this implementation are explained in 
Section IV. The service mesh is an additional abstraction level 
in microservice environments, which can simplify 
administration and allows flexibility. 

A service mesh can simplify the application architecture 
because it decouples the application from the infrastructure 
code. This is possible because a service mesh uses the sidecar 
pattern. So, the development can focus on the domain weather 
the deployment environment. The use of a sidecar makes a 
service mesh language independent so there is consistency 
across all of the used microservices and no constraints in what 
programming language can be used. In exchange a service 
mesh adds a higher overall complexity to the running system. 
Having a service mesh increases the number of runtime 
instances in a system. It also adds extra hops for 
communication because each service call has to go through a 
service mesh sidecar proxy. Furthermore, it looks like it is 
only useful in highly automated environments because it is the 
only place it can show its advantages for security, traffic 
management and observability. 
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Fig. 8. Istio architecture overview [12]. 

 




