
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Look at Service Meshes

Arne Koschel
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany
akoschel@acm.org

Kevin Schulze
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany

kevin.schulze@stud.hs-hannover.de

Marvin Bertram
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany

marvin.bertram@stud.hs-hannover.de

Marc Schaaf
Institute of Information Systems
University of Applied Sciences

Northwestern Switzerland

Olten, Switzerland
marc.schaaf@fhnw.ch

Richard Bischof
Faculty IV, Department of Computer

Science
University of Applied Sciences and

Arts Hannover
Hannover, Germany

richard.bischof@stud.hs-hannover.de

Irina Astrova
Department of Software Science,

School of IT
Tallinn University of Technology

Tallinn, Estonia
irina@cs.ioc.ee

Abstract—Service meshes can be seen as an infrastructure

layer for microservice-based applications that are specifically

suited for distributed application architectures. It is the goal to

introduce the concept of service meshes and its use for

microservices with the example of an open source service mesh

called Istio. This paper gives an introduction into the service

mesh concept and its relation to microservices. It also gives an

overview of selected features provided by Istio as relevant to the

above concept and provides a small sample setup that

demonstrates the core features.

Keywords—distributed systems, Docker, Istio, Kubernetes,

microservices, service meshes

I. INTRODUCTION

Nearly every organization is driven by providing the best
customer service. In the past this was mainly achieved by
addressing the requirements of users with functional software
features. But recently the focus shifted to non-functional
requirements. Important aspects of today’s software
development and operation are key performance indicators
like short time-to-market, high availability and elastic
scalability. The fundamental soft skills were laid down by the
Agile Manifesto [1], which covered four principles of work in
the software development process and emphasized customer
satisfaction.

Therefore, four principles of modern work have been
introduced that aim on deploying new software features to
customers as early as possible. The major technical step was
the introduction of Cloud Computing [2] and the rise of public
cloud service providers like Amazon Web Services, Google
Cloud Platform and Microsoft Azure. Nowadays anyone can
have access to high performance infrastructures, given only
cheap client devices and internet connection. This evolution
empowered anybody to build, run and offer services without
the need of big initial investments. Based on this mindset and
technology, modern project management methods like Scrum
and DevOps have been developed and are widely adopted in
the industry today. In most agile environments the traditional
monolithic design of applications was too cumbersome.
Therefore, approaches like Domain Driven Design (DDD) [3]
helped to split monoliths into smaller pieces alongside
bounded contexts. Those pieces were finally orchestrated and
integrated in Software Oriented Architecture (SOA) via an
Enterprise Service Bus (ESB) [4].

With the release of the container technology Docker in
2013, microservice architectures gained a new momentum.
Containers were a kind of game changer because they
enabled microservices according to the modern definition by
Martin Fowler:

“[...] there are common characteristics around
organization around business capability, automated
deployment, intelligence in the endpoints, and decentralized
control of languages and data” [5].

To run container-based microservice architectures in
production grade environments, orchestrators like Kubernetes
and Apache Mesos have been developed. The speed of
innovation and agility led to extremely distributed and chaotic
deployments. Adrian Cockroft described this scenario as
“Death Star of Microservices” [6]. Fig. 1 shows a visualization
of communication between microservices at Netflix.

Fig. 1. Death-Star of Microservices at Netflix [6].

Obviously, it seems quite hard to run and maintain this
architecture in an agile manner, while still having to reach
high availability and reliability. Because of that, resilience
frameworks like Netflix OSS (https://netflix.github.io/) have
been developed and provide mechanisms like service
discovery, circuit breaking and latency and fault tolerance. For
popular programming languages and frameworks libraries are
available, e. g., for Java and Spring Boot (https://spring.io/
projects/ spring-cloud-netflix).

ak
Texteingabe
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
doi:10.1109/IISA52424.2021.9555536

Nevertheless, the approach of implementing this
functionality into the microservices themselves has a number
of disadvantages:

• Increased complexity of microservice code

• Limited choice of programming languages

• Low reusability of microservice artifacts

• Difficult collaborative development.

Service meshes are an approach to fix those points by
extracting any infrastructure related code from the
microservices into a dedicated layer.

II. FUNDAMENTALS

A. Service Mesh Concept

The service mesh layer is located between the
microservice and orchestration layers. This stack is shown in
Fig. 2. In the orchestration layer point of view, the service
mesh is just another application that needs to be managed.

Fig. 2. Service mesh layer between application and orchestration.

The basic idea is to route all ingress and egress traffic
from microservices through the service mesh layer. This way,
the traffic can be observed and modified through the service
mesh. The service mesh includes Application Programming
Interfaces (APIs) that let it for an example integrate into
logging platforms, telemetry or policy systems. Basically, a
service mesh can provide features in four areas:

• Security (encryption, decryption)

• Traffic management (routing, canary deployments)

• Policies and telemetry (authentication, fault
detection)

• Observability (logging, metrics).

For implementing service meshes seamlessly into
microservice architectures the sidecar pattern is used. This is
explained next.

B. Sidecar Pattern

In the sidecar pattern all microservices are appended with
so called “sidecars” that can carry out supporting tasks for the
microservice. In a simple example of a webhosting
microservice, sidecars can periodically update the webspace
directory with content of a remote repository [7]. In the
context of service meshes they proxy all network traffic. This
scenario is shown in Fig. 3. The sidecar is independent
configurable and can intercept and modify all packets.

Fig. 3. Sidecar pattern.

This concept can be applied to various systems and is
agnostic to specific technologies or products. It is applicable
for environments that already use dedicated deployment units
such as virtual machines or containers.

C. Dynamically Configurable Proxies

The main requirement are proxy sidecars that can handle
configuration changes at runtime. Common proxy servers like
Apache Httpd and Nginx are not suitable. Instead Istio and
other service meshes
(https://www.hashicorp.com/products/consul/service-mesh/,
https://aws.amazon.com/de/app-mesh/) use the Envoy

(https://www.envoyproxy.io/) proxy, which can be
configured at runtime and handle all sorts of Transmission
Control Protocol (TCP) connections.

D. Docker and Kubernetes

As mentioned before, service meshes can be used in
different technology stacks. Because Docker and Kubernetes
are used in this work, a short overview about those and their
meaning in the context of service meshes are given next.

Docker is the de-facto standard for containers in cloud
computing. It uses immutable software artifacts (images),
which can be instantiated to running processes (containers).

Kubernetes is a framework for orchestration of containers.
It abstracts multiple machines as one cluster, where workloads
can be run as containers. It can be managed over an API that
is accessed via kubectl Command Line Interface (CLI). The
API is extensible over Custom Resource Definitions (CRDs)
but contains a number of basic types. The most important
types for this work are as follows:

• Namespaces are organizational units of resources in a
cluster. They enable global configuration of resources
inside a namespace as well as general network
policies between namespaces.

• Labels are metadata for resources and enable dynamic
selections of resources. For example, this is useful in
scenarios like load-balancing, where you want to split
traffic to dynamically changing group of containers.
In the context of service meshes, namespaces can be
labeled with specific attributes, so that sidecar
containers get automatically injected in all contained
Pods without any further configuration.

• Pods are deployment units of workloads and consist
of one or more containers. Containers in a Pod share
their network addresses, port space, hostname and can
communicate via Inter Process Communication
(IPC). Because of that, they are always deployed on
the same cluster node. In the context of a service

Application

Sidecar

deployment unit

mesh, Pods are used to deploy a microservice
container along with its own sidecar proxy container.

• Services abstracts the access to services provided by
Pods. Because Pods are scheduled to cluster nodes
depending on current resource requisition, their IP
addresses are permanently changing and not suitable
for referencing. Instead, services define static
identifiers and use labels and annotations to route
traffic correctly.

III. EXAMPLE: ISTIO

A. Architecture

The main architectural components in Istio are divided
into so called Data Plane and Control Plane, each of
which with a distinct responsibility. The planes themselves
have additional parts that provide the actual functionality
of Istio. Overall, Istio as a service mesh is designed to be
independent of the underlying technology of the orchestration
layer. Though the reference implementation and examples do
prefer Kubernetes. The control plane consists of the four parts
Mixer, Citadel, Galley and Pilot, whereas in the data plane
everything is handled through a proxy [8] [9]. Fig. 8 shows an
overview of Istio’s architecture. Next, each part will looked in
more detail.

1) Data Plane: The data plane handles the ingress and
egress network traffic. This functionality is implemented
transparently to the actual application and enables the addition
of further capabilities without the need of implementing it
in the application itself. As mentioned, Istio uses Envoy as
proxy. Envoy itself is specifically designed to be used in
service-oriented architecture-type applications and is placed
alongside them. Kubernetes auto-injects the Envoy proxy
inside a microservice Pod and configures the Pods routing
tables. The overall flow of communication is shown in Fig. 4.
This design leads to two advantages: First, the language of the
application is no longer relevant. That means the services in a
mesh can be implemented in a polyglot set of languages and
all the communication is handled by Envoy. Second, Envoy
can be upgraded and deployed in a transparent way with help
of library upgrades. [10]

Features and technologies that are supported by Envoy
include gRPC (https://grpc.io/), local balancing, HTTP1.1,
HTTP2, metrics aggregation, health checking and more
(https://www.envoyproxy.io/). Furthermore, Envoy is written
in C++, which should be beneficial for performance.

2) Control Plane: The role of the control plane is to act as
a source from where policies and the configuration is pushed
to the data plane. Besides the three main components Mixer,
Pilot and Citadel, Galley acts as the more top-level part for
the Istio configuration. It shields the other components of
specifics of getting the actual configuration from the platform
(e.g., Kubernetes) that lies beneath [11].

Mixer: The main responsibility of Mixer consists of
communication with the Istio proxies to get telemetry data, to
push policies, to apply custom metrics, to perform access
control checks and to deploy rate-limiting rules [9].

The architecture of Mixer is shown in Fig. 4; it is designed
to abstract the aforementioned functionality from the services
and the rest of the Istio components. It also provides a plugin-
model with Mixer as an intermediary. Plugins in this model
are called adapters. Through the adapter API different

backend system can interact with Mixer. Prior to forwarding a
request to the service, the Envoy sidecar proxies communicate
with Mixer to check if rules apply. They also obtain telemetry
data after the request. The Envoy sidecar proxies have caching
and buffering functionality so that Mixer is not called
frequently.

Mixer’s main configuration mechanism are attributes.
These attributes describe individual requests as well as the
environment around them. They are comprised of a type and
name. They describe, e.g., the origin IP address of a request
and response codes. The main source of those attributes is the
Envoy proxy even though the adapters plugin model allows
for further attribute data. Communication is then initiated to
the different backends after the attributes are handled by
Mixer [8].

Fig. 4. Mixer (source: https://istio.io/docs/reference/config/policy-and-
telemetry/mixer-overview/).

Pilot: The traffic management responsibility lies in the
Pilot component of Istio. Pilot is organizing and managing the
sidecar proxies. When a change occurs in the topology all
sidecars are informed by Pilot. That means that each of the
sidecars can adjust their information about available
microservices and how to route traffic. Further features are
service discovery and more detailed traffic routing [9].

Citadel: It handles everything related to security and
certificate distribution, signing and revocation. Due to the
certificates, mutual Transport Layer Security (mTLS) can be
used for identity and encryption between the microservices.
All the traffic that traverses between the microservices is
therefore encrypted transparently without changes to the
actual application [9].

Galley: Istio can be used with different platforms like
Kubernetes. Which means that the configuration has to be
abstracted from the platforms. Galley is the component, which
provides this functionality. Moreover, it validates the
configuration and is responsible for distributing it to the
respective components inside Istio [8].

B. Security

Security nowadays is a crosscutting concern in modern
application development lifecycles and therefore also an
important requirement in microservices deployments. Threats
are not only coming from outside the service mesh but can
also occur inside the mesh. Therefore, all the traffic in the
mesh is automatically not trusted, which is called a zero-trust
approach. Because of that assumption, different requirements
arise. One of the foundations of every security concepts are
strong identities. Istio provides means to assign identities to
services as well as to end users/devices. The service identities
are based on the underlying platform, in case of Kubernetes
the Kubernetes service accounts are used. But if the platform
itself does not provide this functionality, Istio can interface
with for example AWS IAM user/role accounts, GCP service
accounts and others (see [8]).

For user/device identities and authentication different
providers can be used via OAuth (https://oauth.net).
Furthermore, with the use of JWT (JSON Web Tokens)
authentication can be broken down to the request level [8].

Overall Istio provides support for the typical security
properties:

• Authentication

• Authorization

• Auditing.

mTLS: mTLS stands for mutual Transport Layer Security
and is used for actual authentication and encryption. It
helps protecting against replay and man-in-the middle attacks.
Istio uses standard X.509 certificates. The identities in the
certificates are described in the SPIFFE (https://spiffe.io/)
format. In Kubernetes storing the certificates and keys is done
using Kubernetes built-in secrets. If certificates are no longer
valid or revoked, Citadel will update and overwrite the
Kubernetes secrets. Pilot pushes configuration to Envoy about
which of the service accounts may run a specific service. In
the authentication process one Envoy proxy is acting as the
client and establishes a TLS handshake with the “server” side
Envoy. To make sure that the server side is actually allowed
to run the specific service, there exists a mapping, called
secure naming, from the identity in the certificate to the name
of the service in the DNS. The “client” checks this secure
naming information and continues with establishing the TLS
connection or aborts it altogether [8].

Authentication Policies: Enabling mTLS can be done
on a variety of levels (mesh, namespace, service) using an
authentication policy. In general, such policies are checked
whenever a service receives a request. It is also possible to
configure rules regarding mTLS for traffic going to a service.
This is done via Destination Rules [8].

Configuring mTLS for a specific service can be done in
the following way:

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: "servicename"
spec:
 targets:
 - name: service
 peers:
 - mtls: {} # STRICT mTLS

Instead of “Policy” there also exists a “MeshPolicy” for

mesh configuration. Namespaces can be configured by adding
”namespace” to the metadata and leaving out the target.
The default mode of mTLS is STRICT meaning only mTLS
connections are allowed and therefore encrypted traffic.
Beside STRICT there is also a mode called PERMISSIVE. This
mode also allows for plaintext traffic [8].

Authorization: As the case with the authentication
policies, authorization policies can be configured on a mesh,
namespace and service level. On Kubernetes, Istio provides a
single custom resource for the definition:
AuthorizationPolicy. Rules can be defined to service-to-
service and/or end-user-toservice communication. Policies are
evaluated within Envoy at runtime via a specialized engine.
After a request is examined the engine reports back ALLOW
or DENY as a result and therefore grants or prohibits access
to a resource. One can distinguish three cases:

• Authorization policy, which allows access

• No information in the authorization policy but applied.
That leads to a deny all

• A simple allow which as the name suggests grants
access to a resource.

The basic properties of an authorization rule are the
question who is going to do something, which conditions have
to be met in order to do it and what are they going to do. The
rule definition allows for specifying exactly that. The who,
what and condition parts have corresponding configuration
sections in the policy, namely: from, to and when.
Additionally, a selector section can be used to define the target
resource in the service mesh [8].

A sample to deny all authorization rule for a service would
look as follows:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: DenyAll
 namespace: mynamespace
spec:
 {}

This “DenyAll” rule uses an empty definition which leads
to traffic being blocked. The next listing shows a rule where
services from the namespace mynamespaceB are allowed to
access services with the label myapp for version v1 in
namespace mynamespaceA. But the only action that is
allowed is the GET operation.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: authrule
 namespace: mynamespaceA
spec:
 selector:
 matchLabels:
 app: myapp
 version: v1
 rules:
 - from:
 - source:
 namespaces: ["mynamespaceB"]
 to:
 - operation:
 methods: ["GET"]

Configurations that would better fit certain security
requirements are also possible.

C. Traffic Management

Every microservice system needs some way to route
requests between microservices and route a request from the
outside to the correct microservice. One of the core tasks of
Istio is the intelligent management of calls between services
in the service mesh. In Istio traffic rules are specified via Pilot.
Pilot is the core component for traffic management and
consists of four components. The rule API is the point for
specifying high-level traffic management. The platform
adapter implements the necessary controllers for the used
platform (e.g., Kubernetes). The abstract model hides all the
platform specific functions and the Envoy API is the interface
for the communication with other sidecars. [8] An overview
of the Pilot architecture can be found in Fig. 5.

Fig. 5. Pilot Architecture [8].

It is only necessary to specify which call behavior is
wanted without having to specify which Kubernetes Pod or
VM should process these calls. The call behavior and the
assignment of the calls to the runtime instances is handled by
pilot and Envoy. Istio’s traffic management features are:

• Circuit breakers

• Timeout and retries

• A/B testing

• Canary rollouts.

An interesting feature is the content-based traffic steering.
As shown in Fig. 6, it is possible to direct traffic to specific
versions based on the device (Android/iOS) which makes the
request.

Fig. 6. Content-based traffic steering [12].

D. Policies and Telemetry

With Istio it is possible to configure custom policies for an
application. Policy management includes access controls
(blacklists and whitelists), rate limits and quotas. The Mixer
component is responsible for providing the policy controls and
also does telemetry collection. To achieve this functionality
all service-sidecars are calling the mixer before each request
to perform precondition checks as well as after each request to
report telemetry data. The sidecar has local caching so that
precondition checks can be performed from cache. Also, the
sidecar buffers outgoing telemetry so that it only calls Mixer
infrequently and reduces the network traffic (first level pre-
sidecar cache). The second level shared cache in the Mixer
collects and buffers incoming data from the connected
sidecars. The Adapter API of Mixer abstracts the details of
different policy and backend system so that it is possible to
deal with different infrastructure backends for logging, quotas,
and telemetry [12]. Mixer’s topology shows Fig. 7.

Fig. 7. Mixer Topology [12].

E. Observability

Observability is a vital role in a service mesh especially
when it comes to “debugging” and this is the main reason
why people choose to adopt to a service mesh. Because in an
complex environment it is crucial to know what happens in
your system [13]. In Istio it is achieved by:

• Tracing

• Logs

• Metrics.

1) Tracing: If problems occur in distributed systems, it is
often difficult to find the underlying cause. Troubleshooting
within a service mesh therefore regularly presents a major
challenge for development and operation. A request can
traverse the mesh on different paths over several service calls.
Problems can occur at different points in the process, and it
can be difficult to find the reason of timeouts and latency
problems without appropriate support. It is also difficult to
detect error cascades without a suitable tool. Moreover, the
amount of services in a big application can easily be reach a
point where it is not obvious how everything interacts with
one another [9]. Istio takes distributed tracing tools like Zipkin
or Jaeger into account. For this purpose, Istio collects all
necessary information via the sidecar and transfers it to the
configured tracing system.

Besides the direct sidecar-to-tracing system
communication it is also possible for Mixer to integrate with
a tracing backend system and the collection. This gives more
control over the configuration since not all backends are
supported by the sidecar proxy Envoy [8].

Tracing depends on correlating the requests coming into
the sidecar to the requests leaving the sidecar. For that to work
properly, Istio is expecting certain HTTP headers to be present
if HTTP is used to service communication. Subsequently, this
adds a requirement to the microservices themselves, if tracing
is necessary, the services have to add headers. Therefore,
tracing is not transparent [14].

2) Logs: Logging in a service mesh is limited to network
traffic because otherwise changes in the microservice
themselves would be necessary. Istio can configure exactly
what has to be logged and also the format of the logs being
generated. For example, it can include HTTP service codes
[14].

A basic form of logging is the one provided by Envoy.
The proxy just sends access logs to the standard output. If
Kubernetes is used, the logs can be examined using kubectl
[8]. In addition to that, Mixer allows for a more fine-grained
control of the logging configuration. Therefore, CRDs like
rule instance and handler can be used.

Log entries are defined by an instance which is basically a
template. In the instance all Istio attributes that should be part
of a log entry are listed.

...
kind: instance
metadata:
 name: mylog
spec:
compiledTemplate: logentry
params:
severity: ’"warning"’
timestamp: request.time
variables
...
user: source.user | "unknown"

A handler tells Istio how the log entries as instances are
being handled. For example, should the output be in a JSON
format. It also includes the desired levels.

...
kind: handler
metadata:
name: myloghandler
...
spec:
compiledAdapter: stdio
params:
severity_levels:
warning: 1
outputAsJson: true

Rules define which traffic in the mesh should be logged.
A rule also glues the handler and instance together.

...
kind: rule
...
spec:
match: "true"
actions:
- handler: myloghandler
instances:
- mylog

The above examples are adapted from the Istio bookinfo
samples [8]. A more sophisticated approach would be to
forward the logs to a system with further analysis functionality
like Elasticsearch.

3) Metrics: Istio can collect a variety of metrics about the
network and services. These metrics include information
about errors, latency and traffic volume which can be used to
monitor the overall health of the service mesh [8]. For basic
network metrics the Envoy proxies can automatically provide
the necessary information. To get more detailed metrics from
the network requests, Istio needs to know about the protocols
involved in a communication. For example, errors rates can be
deducted from HTTP status codes. Besides the Envoy metrics,
additional ones are provided between services and from the
components of the control plane [8]. Moreover, if the
underlying platform can provide metrics this can also be used
inside Istio [14].

The configuration of metrics collection is similar to the
one regarding the logs. An instance, a handler and a rule is
needed. The values for the metric are defined in the instance.
Mixer gets attributes from itself and Envoy. A handler
configures mappings between the instance to a format which
can be understand by a backend system like Prometheus

(https://prometheus.io/). And the last part defines a rule for the
kind of traffic where metrics should be collected [8].

IV. EXPERIMENTS

Some functionality was tested using the sample
BookinfoApp provided by Istio. The web app is composed of
different microservices and quite simple. One product service
written in Python, a reviews service with different versions
written in Java, a details service written in Ruby and a ratings
service written in NodeJs. To have some real-world
deployment setting, the Google Cloud Platform (GCP) was
used. First, a four-node cluster was setup. Second, Kubernetes
as underlying platform was deployed. Third, within the
CloudShell of GCP, Istio was installed and sidecar injection
for the default namespace enabled. The goal was to understand
and test different aspects of a service mesh, specifically the
observability and traffic routing functionality. Regarding
observability Istio can interface with a variety of tools and the
one used in the experiment is called Kiali (https://kiali.io/).
Kiali has features for viewing different metrics and visualizing
the topology of the mesh. Furthermore, it has the capability to
configure basic traffic management rules and validating them.

A. Scenario

The main scenario was about routing traffic to the various
versions of the reviews page depending on the user agent of
the client calling the BookinfoApp. The difference among the
versions of the reviews page is simply the fact that version
one does not display review stars and is not calling the rating
service, version two has grey stars and version three has red
stars on the page. In conjunction with the user agent headers
the following cases arise:

• iOS users with respective agent will be served reviews
page version 1

• Android users will be served version 2

• Windows users will get version 3

• Everyone else will also get version 3.

B. Implementation

The scenario was implemented using the two Kubernetes
CRDs virtual service and destination rule. The virtual service
is responsible for routing the traffic to a service and uses
definitions from the destination rule. The destination rule is
applied after the traffic is routed. In this case the destination
rule is used to define subsets that comprise the review service.
The excerpt of the virtual service looks as follows:

...
kind: VirtualService
 name: reviews-virtualservice
 namespace: default
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 user-agent:
 regex: .*iPhone.*
 route:
 - destination:
 host: reviews
 subset: version-v1
...
 - route:
 - destination:
 host: reviews
 subset: version-v3

Important is the “match” section for the http header and
user agent. A regex is applied when a request is bound for the
reviews service. When a match is true the request will be
forwarded to the destination service with desired version. If
nothing matches the last route is used. The rules for Android
and Windows user agents look like the one for iOS and
are therefore omitted. The subsets in the virtual service are a
direct reference to the destination rule:

...
kind: DestinationRule
metadata:
name: dr-reviews
namespace: default
spec:
host: reviews
subsets:
- labels:
version: v1
name: version-v1
...

This rule defines three subsets for the reviews service.
Again, the last two were omitted because they are similar. The
name that was chosen in the rule is exactly the one in the
virtual service. Therefore, both the rules work together to
accomplish proper traffic management. To finally test
everything two bash scripts were created that simulate
requests from different user agents. The scripts contain a while
loop with a call to the public facing IP of the cluster. The
request is made via curl which has the “-A” switch for setting
the user agent. One user agent in the scripts was then set to
iOS users and the other one to Android users. While starting
the requests, Kiali was simultaneously observed to see the
traffic being routed through the mesh.

C. Results

It was easy to setup Istio with Kiali on the Google
Cloud with Kubernetes. Moreover, configuring basic traffic
rules without changing anything in the microservices sample
app worked out to be surprisingly straightforward. The
visualization of the mesh in Kiali was also not a difficult task
since the mesh is sending the required data automatically. An
overall good experience with expected results.

V. CONCLUSION

The service mesh concept is the result of an evolution in
the software development process. Beginning with the Agile
Manifesto and the introduction of Cloud Computing as well
as public cloud platforms like AWS, GCP or Azure to
container technology like Docker. State of the art are today’s
microservices. But microservices have problems as well.
Coupling infrastructure code with specific framework
dependencies into microservices leads to an increased
complexity of code and limited choice of programming
languages.

Section II focuses on the fundamentals for a service mesh.
The service mesh as an additional abstraction layer, the
sidecar pattern for the microservices and container
orchestration with Kubernetes were explained. Then the
service mesh Istio was introduced. Showing the main
architectural components Data Plane and Control Plane
and the more fine-grained components Citadel, Mixer, Galley
and Pilot. Each component has special functionalities which
are explained on the basis of the four features Istio can
provide: security, traffic management, policies and telemetry
and observability. These four features were further analyzed
by using the BooInfoApp provided by Istio. The setup
includes GCP, a four-node cluster, Kubernetes and Kiali for

viewing metrics and visualizing the topology of the mesh. The
scenario was routing traffic to different versions of the review
page depending on the user. It was possible to differentiate
between iOS, Android, Windows and all other user of the
application.

The needed steps for this implementation are explained in
Section IV. The service mesh is an additional abstraction level
in microservice environments, which can simplify
administration and allows flexibility.

A service mesh can simplify the application architecture
because it decouples the application from the infrastructure
code. This is possible because a service mesh uses the sidecar
pattern. So, the development can focus on the domain weather
the deployment environment. The use of a sidecar makes a
service mesh language independent so there is consistency
across all of the used microservices and no constraints in what
programming language can be used. In exchange a service
mesh adds a higher overall complexity to the running system.
Having a service mesh increases the number of runtime
instances in a system. It also adds extra hops for
communication because each service call has to go through a
service mesh sidecar proxy. Furthermore, it looks like it is
only useful in highly automated environments because it is the
only place it can show its advantages for security, traffic
management and observability.

REFERENCES

[1] K. Beck et al. Manifesto for Agile Software Development. 2001. URL:
http://www.agilemanifesto.org/

[2] P. Mell and T. Grance. The NIST Definition of Cloud Computing.
Tech. rep. 800-145. Gaithersburg, MD: National Institute of Standards
and Technology (NIST), Sept. 2011. URL:
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[3] E. Evans and M. Fowler. Domain-driven Design: Tackling Complexity
in the Heart of Software. AddisonWesley, 2004. ISBN:
9780321125217. URL: https://books.google.de/books?id=7dlaMs0SE
CsC

[4] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.
ISBN: 0596006756.

[5] M. Fowler. Definition of Microservices. https://martinfowler.com/
articles/microservices.html. (Accessed on 01/15/2020). Apr. 2014.

[6] A. Cockcroft. Migrating to Microservices. https://gotocon.com/dl/
goto-berlin-
2014/slides/AdrianCockcroftMigratingToCloudNativeWithMicroserv
ices.pdf (Accessed on 01/15/2020). Nov. 2014.

[7] B. Burns. Designing Distributed Systems: Patterns and Paradigms for
Scalable, Reliable Services. 1st. O’Reilly Media, Inc., 2018. ISBN:
1491983647.

[8] Istio. https://istio.io/. (Accessed on 10/24/2019).

[9] B. Sutter and C. Posta. Introducing Istio Service Mesh for
Microservices. O’Reilly Media, Incorporated, 2019. ISBN: 978-1-492-
05260-9.

[10] What is Envoy? https://www.envoyproxy.io/docs/envoy/v1.12.0/intro/
what is envoy. (Accessed on 11/15/2019).

[11] Istio Github. github.com/istio/istio/tree/master/galley. (Accessed on
12/01/2019).

[12] Istio Documentation 1.0. https://archive.istio.io/v1.0/ (Accessed on
01/09/2020).

[13] Z. Butcher. Practical Istio (Docker Con’19). https://
www.youtube.com/watch?v=uRXzRfthYeU. (Accessed on
01/12/2020). May 2019.

[14] H. Prinz and E. Wolff. Service Mesh – The New Infrastructure for
Microservices. innoQ Deutschland GmbH, 2019. ISBN: 978-3-
9821126-1-9.

[15] Eine Einfuhrung in Istio: Keine Angst vorm Service-Mesh bei
Microservices-Architekturen - JAXenter. https: //jaxenter.de/istio-
einfuehrung-microservices-cloudteil-1-71261 (Accessed on
10/24/2019).

[16] L. Calcote and Z. Butcher. Istio: Up and Running: Secure, Manage, and
Connect Your Microservices with Service Mesh. O’Reilly Media,
Incorporated. ISBN: 9781492043782.

[17] Bornkessel et. Prinz. Alle 11 Minuten verliebt sich ein Microservice in
Linkerd heise Developer. https://www.heise.de/developer/artikel/Alle-
1-Minuten- verliebt- sich- ein-Microservice-in-Linkerd-4511406.html
(Accessed on 10/24/2019). July 2019.

[18] Dino Chiesa and Greg Kuelgen. APIs, Microservices, and the Service
Mesh (Cloud Next’19).

https://www.youtube.com/watch?v=IblDMVwSSk4 (Accessed on
11/11/2019). Apr. 2019.

[19] M. O'Keefe. Istio in Production: Day 2 Traffic Routing (Cloud
Next'19). https://www.youtube.com/watch?v=7cINRP0BFY8
(Accessed on 11/11/2019). Apr. 2019.

Fig. 8. Istio architecture overview [12].

